Breast Cancer

Treatment Guidelines for Patients

Version IX/ July 2007
Current ACS-NCCN Treatment Guidelines for Patients

Advanced Cancer and Palliative Care Treatment Guidelines for Patients (English and Spanish)

Bladder Cancer Treatment Guidelines for Patients (English and Spanish)

Breast Cancer Treatment Guidelines for Patients (English and Spanish)

Cancer Pain Treatment Guidelines for Patients (English and Spanish)

Cancer-Related Fatigue and Anemia Treatment Guidelines for Patients (English and Spanish)

Colon and Rectal Cancer Treatment Guidelines for Patients (English and Spanish)

Distress Treatment Guidelines for Patients (English and Spanish)

Fever and Neutropenia Treatment Guidelines for Patients with Cancer (English and Spanish)

Lung Cancer Treatment Guidelines for Patients (English and Spanish)

Melanoma Cancer Treatment Guidelines for Patients (English and Spanish)

Nausea and Vomiting Treatment Guidelines for Patients with Cancer (English and Spanish)

Non-Hodgkin's Lymphoma Treatment Guidelines for Patients (English and Spanish)

Ovarian Cancer Treatment Guidelines for Patients (English and Spanish)

Prostate Cancer Treatment Guidelines for Patients (English and Spanish)
The mutual goal of the National Comprehensive Cancer Network® (NCCN®) and the American Cancer Society (ACS) partnership is to provide patients and the general public with state-of-the-art cancer treatment information in language that is easy to understand. This information, based on the NCCN’s Clinical Practice Guidelines, is intended to help you talk with your doctor about your treatment. These guidelines do not replace the expertise and clinical judgment of your doctor.
The NCCN Clinical Practice Guidelines are developed for health professionals by a diverse panel of experts. The guidelines are a statement of consensus of its authors regarding the scientific evidence and their views of currently accepted approaches to treatment. The NCCN guidelines are updated as new information becomes available. The Patient Information version is updated accordingly and is available on-line through the American Cancer Society and NCCN Web sites. To ensure you have the most recent version, contact the American Cancer Society at 1-800-ACS-2345 or the NCCN at 1-888-909-NCCN.

©2007 by the American Cancer Society (ACS) and the National Comprehensive Cancer Network (NCCN). All rights reserved. The information herein may not be reprinted in any form for commercial purposes without the expressed written permission of the ACS. Single copies of each page may be reproduced for personal and non-commercial uses by the reader.
Contents

Introduction ... 5
Making Decisions About Breast Cancer Treatment .. 5
Inside Breast Tissue ... 6
Types of Breast Cancer .. 6
Breast Cancer Work-up ... 9
Breast Cancer Stages .. 15
Breast Cancer Treatment ... 17
Treatment of Breast Cancer During Pregnancy .. 31
Treatment of Pain and Other Symptoms ... 32
Complementary and Alternative Therapies ... 32
Other Things to Consider During and After Treatment 33
Clinical Trials ... 34

Work-up (Evaluation) and Treatment Guidelines

Decision Trees .. 39

- Stage 0 Lobular Carcinoma in Situ (LCIS) ... 40
- Stage 0 Ductal Carcinoma in Situ (DCIS) .. 42
- Stage I, II, and Some Stage III Breast Cancer .. 46
- Axillary Lymph Node Surgery .. 52
- Additional Treatment (Adjuvant Therapy) After Surgery 54
- Additional (Adjuvant) Treatment for Invasive Ductal, Lobular, Mixed, or Metaplastic Cancers with Small Tumors ... 56
- Additional (Adjuvant) Treatment for Invasive Ductal, Lobular, Mixed, or Metaplastic Cancers with Larger Tumors or Lymph Node Spread 58
- Additional (Adjuvant) Treatment for Tubular or Colloid Breast Cancers 60
- Additional (Adjuvant) Hormone Treatment ... 62
- Treatment of Large Stage II or Stage IIIA Breast Cancers 66
- Stage III Locally Advanced Breast Cancers ... 72
- Follow-up and Treatment of Stage IV Disease or Recurrence of Disease 76
- Breast Cancer in Pregnancy .. 84

Glossary .. 86
Arthur G. James Cancer Hospital and Richard J. Solove Research Institute at The Ohio State University
City of Hope
Dana-Farber/Brigham and Women’s Cancer Center
Massachusetts General Hospital Cancer Center
Duke Comprehensive Cancer Center
Fox Chase Cancer Center
Fred Hutchinson Cancer Research Center/
Seattle Cancer Care Alliance
H. Lee Moffitt Cancer Center & Research Institute
at the University of South Florida
Huntsman Cancer Institute at the University of Utah
Memorial Sloan-Kettering Cancer Center
Robert H. Lurie Comprehensive Cancer Center
of Northwestern University
Roswell Park Cancer Institute
The Sidney Kimmel Comprehensive Cancer Center
at Johns Hopkins
The University of Texas M.D. Anderson Cancer Center
Siteman Cancer Center at Barnes-Jewish Hospital and
Washington University School of Medicine
St. Jude Children’s Research Hospital/
University of Tennessee Cancer Institute
Stanford Comprehensive Cancer Center
UCSF Comprehensive Cancer Center
University of Alabama at Birmingham
Comprehensive Cancer Center
University of Michigan Comprehensive Cancer Center
UNMC/Eppley Cancer Center
at The Nebraska Medical Center
Vanderbilt-Ingram Cancer Center
Introduction

With this booklet, women with breast cancer have access to information on the way breast cancer is treated at the nation’s leading cancer centers. Originally developed for cancer specialists by the National Comprehensive Cancer Network (NCCN), these treatment guidelines have now been translated for the public by the American Cancer Society.

Since 1995, doctors have looked to the NCCN for guidance on the highest quality, most effective advice on treating cancer. For more than 90 years, the public has relied on the American Cancer Society for information about cancer. The Society’s books and brochures provide comprehensive, current, and understandable information to hundreds of thousands of patients, their families, and friends. This collaboration between the NCCN and ACS provides an authoritative and understandable source of cancer treatment information for the public.

These patient guidelines will help you better understand your cancer treatment and your doctor’s counsel. We urge you to discuss them with your doctor. To make the best possible use of this information, you might begin by asking your doctor the following questions:

- How large is my cancer? Do I have more than one tumor in the breast?
- What is my cancer’s grade (how abnormal the cells appear) and histology (type and arrangement of tumor cells) as seen under a microscope?
- Do I have any lymph nodes with cancer (positive lymph nodes)? If yes, how many?
- What is the stage of my cancer?
- Does my cancer contain hormone receptors? If so, what does this mean for me?
- Is my cancer positive for HER2? If so, what does this mean for me?
- Is breast-conserving treatment an option for me?
- In addition to surgery, what other treatment do you recommend? Radiation? Chemotherapy? Hormone therapy?
- What are their side effects?
- Are there any clinical trials that I should consider?

Making Decisions About Breast Cancer Treatment

On the pages after the general information about breast cancer, you’ll find flow charts that doctors call decision trees. The charts represent different stages of breast cancer. Each one shows you step-by-step how you and your doctor can arrive at the choices you need to make about your treatment.

Here you will find background information on breast cancer with explanations of cancer stage, work-up, and treatment — all categories used in the flow charts. We’ve also provided a glossary at the end of the booklet. Words in the glossary will appear in italics when first mentioned in this booklet.

Although breast cancer is a very serious disease, it can be treated, and it should be treated by a team of health care professionals with experience in treating women with breast cancer. This team may include a surgeon,
radiation oncologist, medical oncologist, radiologist, pathologist, oncology nurse, social worker, and others. But not all women with breast cancer receive the same treatment. Doctors must consider a woman’s specific medical situation and her preferences. This booklet can help you and your doctor decide which choices best meet your medical and personal needs.

Breast cancer can occur in men. Since the incidence is very low, this booklet is for women with breast cancer. To learn more about breast cancer in men, speak with your doctor and contact the American Cancer Society at 1-800-ACS-2345 or www.cancer.org.

Inside Breast Tissue

The main parts of the female breast are lobules (milk producing glands), ducts (milk passages that connect the lobules and the nipple), and stroma (fatty tissue and ligaments surrounding the ducts and lobules, blood vessels, and lymphatic vessels). Lymphatic vessels are similar to veins but carry lymph instead of blood. Most breast cancer begins in the ducts (ductal), some in the lobules (lobular), and the rest in other breast tissues.

Lymph is a clear fluid that carries tissue waste products and immune system cells. Most lymphatic vessels of the breast lead to underarm (axillary) lymph nodes. Some lead to lymph nodes above the collarbone (called supraclavicular lymph nodes) and others to internal mammary lymph nodes which are next to the breastbone (or sternum). Cancer cells may enter lymph vessels and spread along these vessels to reach lymph nodes. Cancer cells may also enter blood vessels and spread through the bloodstream to other parts of the body.

Lymph nodes are small, bean shaped collections of immune system cells important in fighting infections. When breast cancer cells reach the axillary lymph nodes, they can continue to grow, often causing swelling of the lymph nodes in the armpit or elsewhere. If breast cancer cells have spread to the axillary lymph nodes, it makes it more likely that they have spread to other organs of the body as well.

Types of Breast Cancer

Breast cancer is an abnormal growth of the cells that normally line the ducts and the lobules. Breast cancer is classified by whether the cancer started in the ducts or lobules,
whether the cells have “invaded” (grown or spread) through the duct or lobule, and by the way the cancer cells look under a microscope. Breast cancers are broadly grouped into those that are still in the breast lobules or ducts (referred to as “noninvasive” or “carcinoma in situ”) and those that have started to grow and spread beyond the walls of the ducts or lobules (referred to as “infiltrating” or “invasive”). It is not unusual for a single breast tumor to have combinations of these types, and to have a mixture of invasive and non-invasive cancer.

Carcinoma In Situ
Carcinoma is another word for cancer and carcinoma in situ (CIS) means that the cancer is a very early cancer that is still confined to the ducts or lobules where it started. It has not spread into surrounding fatty tissues in the breast or to other organs in the body. There are 2 types of breast carcinoma in situ:

- **Lobular carcinoma in situ (LCIS):** Also called lobular neoplasia. It begins in the lobules, but has not grown through the lobule walls. Breast cancer specialists do not think that LCIS itself becomes an invasive cancer, but women with this condition do run a higher risk of developing an invasive cancer in either breast.
- **Ductal carcinoma in situ (DCIS):** This is the most common type of noninvasive breast cancer. In DCIS, cancer cells inside the ducts do not spread through the walls of the ducts into the fatty tissue of the breast. DCIS is treated with surgery and sometimes radiation, which are usually curative. If not treated, DCIS will likely progress and become an invasive cancer.

Invasive Breast Cancers
Invasive cancer is a term used to describe those cancers that have started to grow and have spread beyond the ducts or lobules. These cancers are divided into different types of invasive breast cancer depending on how the cancer cells look under the microscope. They are also grouped according to how closely they look like normal cells. This is called the grade which helps predict whether the woman has a good or less favorable outlook. Outlook is referred to as prognosis.

Invasive (also called infiltrating) Ductal Carcinoma (IDC)
This cancer starts in a milk passage, or duct, of the breast, but then the cancer cells break through the wall of the duct and spread into the fatty tissue. Cancer cells can then spread...
into lymphatic channels or blood vessels of the breast and to other parts of the body. About 80% of all breast cancers are invasive ductal carcinoma.

Invasive (also called infiltrating) Lobular Carcinoma (ILC)

This type of cancer starts in the milk-producing glands. Like IDC, this cancer can spread beyond the breast to other parts of the body. About 10% to 15% of invasive breast cancers are invasive lobular carcinomas.

Mixed Tumors

Mixed tumors describe those that contain a variety of cell types, such as invasive ductal combined with invasive lobular breast cancer. With this type, the tumor is usually treated as if it were an invasive ductal cancer.

Medullary Cancer

This special type of infiltrating ductal cancer has a fairly well-defined boundary between tumor tissue and normal breast tissue. It also has a number of special features, including the presence of immune system cells at the edges of the tumor. It accounts for about 5% of all breast cancer. It can be difficult to distinguish medullary breast cancer from the more common invasive ductal breast cancer. Most cancer specialists think that medullary cancer is very rare, and that cancers that are called medullary cancer should be treated as invasive ductal breast cancer.

Metaplastic Tumors

Metaplastic tumors are a very rare type of invasive ductal cancer. These tumors include cells that are normally not found in the breast, such as cells that look like skin cells (squamous cells) or cells that make bone. These tumors are treated similarly to invasive ductal cancer.

Inflammatory Breast Cancer (IBC)

Inflammatory breast cancer is a special type of breast cancer in which the cancer cells have spread to the lymph channels in the skin of the breast. Inflammatory breast cancer accounts for about 1% to 3% of all breast cancers. The skin of the affected breast is red, feels warm, and has the appearance of an orange peel. The affected breast may become larger or firmer, tender, or itchy. IBC is often mistaken for infection in its early stages.

Inflammatory breast cancer has a higher chance of spreading and a worse outlook than typical invasive ductal or lobular cancer. Inflammatory breast cancer is always staged as stage IIIB unless it has already spread to other organs at the time of diagnosis which would then make it a stage IV. (See discussion of stage on page 15).

Colloid Carcinoma

This rare type of invasive ductal breast cancer, also called mucinous carcinoma, is formed by mucus-producing cancer cells. Colloid carcinoma has a better outlook and a lower chance of metastasis than invasive lobular or invasive ductal cancers of the same size.

Tubular Carcinoma

Tubular carcinoma is a special type of invasive ductal breast carcinoma. About 2% of all breast cancers are tubular carcinomas. Women with this type of breast cancer have a better outlook because the cancer is less
likely to spread outside the breast than invasive lobular or invasive ductal cancers of the same size. The majority of tubular cancers are hormone receptor-positive, but \textit{HER2}-negative. (See discussion of tumor tests on page 13.)

\section*{Special Situations}

\textbf{Paget’s Disease}

This type of breast cancer starts in the breast ducts and spreads to the skin of the nipple and then to the areola, the dark circle around the nipple. It is rare, accounting for only 1\% of all cases of breast cancer. The skin of the nipple and areola often appears crusted, scaly, and red, with areas of bleeding or oozing. The woman may notice burning or itching. Paget’s disease is often, but not always, associated with in situ carcinoma or with invasive breast cancer. If no lump can be felt in the breast tissue and the biopsy shows DCIS but no invasive cancer, the woman has a very favorable outlook.

\textbf{Phyllodes Tumor}

This very rare breast tumor involves both the cells in the stroma (fatty tissue and ligaments surrounding the ducts and lobules, blood vessels, and lymphatic vessels) and the cells that normally line the ducts and the lobules of the breast. This is in contrast to carcinomas, which develop only in the cells of the ducts or lobules. Phyllodes tumors are usually not cancerous but, on rare occasions, they may be cancerous.

\section*{Breast Cancer Work-up}

\subsection*{Evaluating a Breast Lump or Abnormal Mammogram Finding}

An evaluation of a breast lump or an abnormal \textit{mammogram} finding includes a thorough medical history, a physical examination, and breast imaging (such as x-rays). A biopsy is needed for a suspicious finding, though often these suspicious areas prove to be benign (not cancer). If cancer is found, other x-rays and blood tests are needed. Exactly which tests are helpful depends on the type of cancer, and if and where it has spread. The following sections provide a summary of the steps, tests, and types of biopsy that may be suggested.

\subsection*{Doctor Visit and Examination}

A women’s first step in having a new breast lump, symptom, or change on a mammogram evaluated is to meet with her doctor. The doctor will take a medical history which includes asking a series of questions about symptoms and factors that may be related to breast cancer risk (such as family history of cancer). The physical exam should include a general examination of the woman’s body as well as careful examination of her breasts (called \textit{palpation}). The doctor will examine:

- the breasts, including texture, size, relationship to skin and chest muscles, and the presence of lumps or masses
- the nipples and skin of the breasts
- lymph nodes under the armpit and above the collarbone
- other organs to check for obvious spread of breast cancer and to help evaluate the general condition of the woman’s health
Breast Imaging

After completing the physical exam and medical history, the doctor will recommend tests to look at the breast, beginning with a mammogram (unless this has already been done or if the woman is very young).

Women with a lump in the breast, other suspicious symptoms, or with a change found on a screening mammogram, will often have a procedure called a diagnostic mammogram. A diagnostic mammogram includes more mammogram pictures of the area of concern to get more information about the size and character of the area. A breast ultrasound or sonogram also may be done. The ultrasound uses high frequency sound waves to further evaluate a lump or mammogram finding. Most importantly, ultrasound helps determine if the area of concern is a fluid-filled simple cyst, which is usually not cancer, or is solid tissue that may be cancer.

Some women may have a breast magnetic resonance imaging (MRI) procedure in addition to a diagnostic mammogram and ultrasound. However, a breast MRI should not be used in place of standard mammography and ultrasound. Furthermore, breast MRI is not routinely used to diagnose breast cancer and is not needed for women with breasts that can be adequately evaluated with mammography and ultrasound. (See discussion of MRI on page 12.)

Breast Biopsy

If a woman or her doctor finds a suspicious breast lump, or if imaging studies show a suspicious area, the woman must have a biopsy. This procedure takes a tissue sample to be examined under the microscope to see if cancer is present.

There are several different types of breast biopsies. Biopsy may be done with a needle, where the doctor removes a piece of breast tissue by placing a needle through the skin into the breast. For a surgical biopsy a surgeon uses a scalpel to cut through the skin and remove a larger piece of the suspicious breast tissue. Each type of biopsy has advantages and disadvantages. The type of biopsy procedure used is tailored to each woman’s situation and the experience of her health care team.

In most cases, a needle biopsy is preferred over a surgical biopsy as the first step in making a cancer diagnosis. A needle biopsy provides a diagnosis quickly and with little discomfort. In addition, it gives the woman a chance to discuss treatment options with her doctor before any surgery is done. Sometimes a surgical biopsy may still be needed to remove all or part of a lump after a needle biopsy has been done. In some patients it may be necessary to do a surgical biopsy instead of needle biopsy.

Several types of needle biopsies are used to diagnosis breast cancer. The most common is a core needle biopsy that removes a small cylinder of tissue. A suction device can also be used to remove breast tissue, which may be useful if multiple mammogram abnormalities, such as calcifications, are clustered together. Another type of biopsy is fine needle aspiration biopsy (FNA). FNA uses a smaller needle than a core biopsy and removes a small amount of cells for evaluation under the microscope. FNA also is used to remove fluid from a suspicious cyst.
If the lump can be felt, a doctor can do a core needle or FNA biopsy in the office, without the aid of breast x-rays to guide the needle. If a lump cannot be felt easily, ultrasound or mammograms can be used to guide the needle during the biopsy. The mammogram-directed technique is called **stereotactic needle biopsy**. In this procedure, a computerized view of the mammogram helps the doctor guide the tip of the needle to the right spot. Ultrasound can be used in the same way to guide the needle. The choice between a mammogram directed stereotactic needle biopsy and ultrasound guided biopsy depends on the type and location of the suspicious area, as well as the experience and preference of the doctor.

Some patients need a surgical (excisional) biopsy. The surgeon generally removes the entire lump or suspicious area and includes a zone of surrounding normal appearing breast tissue called a **margin**. If the tumor cannot be felt, then the mammogram or ultrasound is used to guide the surgeon through a technique called wire localization. After numbing the area with a local anesthetic, x-ray or ultrasound pictures are used to guide a small hollow needle to the abnormal spot in the breast. A thin wire is inserted through the center of the needle, the needle is removed, and the wire used to guide the surgeon to the right spot.

Most breast biopsies cause little discomfort. Only local anesthesia (numbing of the skin) is necessary for needle biopsies. For surgical biopsies, most surgeons use a local anesthetic plus some medicines injected into a vein to make the patient drowsy. A general anesthetic (using drugs to make the patient sleep) is not needed for most breast biopsies.

Tissue Examination and Pathology Report

After a breast biopsy, the biopsy tissue is sent to a pathology lab where a doctor trained to diagnose cancer (a pathologist) examines it under the microscope. This process may take several days. This examination of the breast tissue determines if cancer is present.

Your doctor should give you your pathology results. You can ask for a copy of your pathology report and to have it explained carefully to you. If you want, you can get a second opinion of the pathology of your tissue by having the microscope slides of your tissue sent to a consulting breast pathologist at an NCCN cancer center or other laboratory suggested by your doctor.

Other Tests after Cancer Has Been Diagnosed

If the breast biopsy results show that cancer is present, the doctor may order other tests to find out if the cancer has spread and to help determine the best treatment. For most women with breast cancer, extensive testing is of no benefit and is not necessary. There is no test that can completely reassure you that the cancer has not spread. The NCCN Guidelines describe which tests are needed based on the extent (spread) of the cancer, and on the results of the history and physical exam. These tests use x-rays, magnetic fields, or radioactive substances to create pictures of the inside of the body to look at the extent of the cancer. Tests that may be done include:

Chest x-ray

All women with invasive breast cancer should have a chest x-ray before surgery and to see if
there is evidence that the breast cancer has spread to the lungs.

Bone scan
This may provide information about spread of breast cancer to the bone. However, many changes that show up on a bone scan are not cancer. Unless there are symptoms of spread to the bone, including new pains or changes on blood tests, a bone scan is not recommended except in patients with advanced cancer. To do a bone scan, a small dose of a radioactive substance is injected into your vein. The radioactive substance collects in areas of new bone formation. These areas can be seen on the bone scan picture. Other than the needle stick for the injection, a bone scan is painless.

Computerized tomography (CT or CAT) scans
CT scans are done when symptoms or other findings suggest that cancer has spread to other organs. For most women with an early stage breast cancer, a CT scan is not needed. But if the cancer appears to be more advanced, a CT of the abdomen and/or chest may be done to see if the cancer has spread. CT scans take many x-rays of the same part of the body from different angles to provide detailed pictures of internal organs. Except for the injection of intravenous dye, necessary for most patients, this is a painless procedure.

Magnetic resonance imaging (MRI)
MRI scans use radio waves and magnets to produce detailed images of internal organs without any x-rays. MRI is useful in looking at the brain and spinal cord and to look at any suspicious area in the bone. A special MRI procedure called a breast MRI with dedicated breast coils can also be used to look for tumors in the breast. This procedure should only be done by personnel who are highly experienced in the technical details of breast MRI. Also, in order for the results of a breast MRI exam to be useful, they should be interpreted by the personnel at the center where the breast MRI was performed. These people should be working directly with the other medical professionals involved in your care.

Routine MRI’s for all patients with breast cancer are not helpful and are not needed. Situations where a breast MRI can be useful include the following:

- Women who have had a biopsy result showing cancer in the axilla (armpit), but do not show signs of breast cancer when their breasts are examined by a doctor or by mammography.
- Women with a biopsy result showing cancer in the breast who have dense breasts (breasts with a lower amounts of fat compared with other tissues) that can not be fully evaluated with mammography.

Positron emission tomography (PET)
PET scans use a form of sugar (glucose) that contains a radioactive atom. A small amount of the radioactive material is injected into a vein in your arm. After the sugar has been allowed to travel throughout your body you are put into the PET machine where a special camera can detect the radioactivity. Because of the high amount of energy that breast cancer cells use, areas of cancer in the body absorb large amounts of the radioactive sugar. Newer devices combine PET scans and
CT scans. PET scans are not routinely recommended for most patients with breast cancer, but may be used to initially evaluate patients with metastatic disease or recurrent breast cancer. PET scans may also be used if results of other tests do not clearly show whether the cancer has spread beyond the breast to other areas of the body.

Blood Tests

Some blood tests are needed to plan surgery, to screen for evidence of cancer spread, and to plan treatment after surgery. These blood tests include:

- **Complete blood count (CBC).** This determines whether the blood has the correct type and number of blood cells. Abnormal test results could reveal other health problems, including anemia, and could suggest the cancer has spread to the bone marrow. Also, if you receive chemotherapy, doctors repeat this test regularly because chemotherapy often affects the blood forming cells of the bone marrow.
- **Blood chemicals and enzyme tests.** These tests are done in patients with invasive breast cancer. (They are not needed with *in situ* cancer.) They can sometimes tell if the cancer has spread to the bone or liver. If these test results are abnormal, your doctor will order imaging tests, such as bone scans or CT scans.

Tumor tests (estrogen receptor, progesterone receptors, and HER2)

Testing the tumor itself for certain features is an important step in deciding what treatment options are best for your type of cancer. The pathology lab tests the cancer tissue that is removed, either from a biopsy or the final surgery.

Estrogen and Progesterone Receptors:

Two hormones in women — estrogen and progesterone — stimulate the growth of normal breast cells and play a role in many breast cancers. Cancer cells respond to these hormones through the estrogen receptors (ER) and progesterone receptors (PR). ER and PR are each cell’s “welcome mat” for these hormones circulating in the blood. The tumor is tested for these hormone receptors in a test called a hormone receptor assay. If a cancer does not have these receptors, it is referred to as hormone receptor-negative (estrogen receptor-negative and progesterone receptor-negative). If the cancer has these receptors, it is referred to as hormone receptor-positive (estrogen receptor-positive and/or progesterone receptor-positive). A cancer can also be just ER-positive or PR-positive.

The hormone receptors are important because cancer cells that are ER- or PR-positive often stop growing if the woman takes drugs that either block the effect of estrogen and progesterone or decrease the body’s levels of estrogen. These drugs also lower the chance that the cancer will come back (recur) and improve the chances of living longer. Most women whose breast cancer is ER-positive or PR-positive will take these drugs as part of their treatment. However, these hormone-active drugs are not effective if the cancer does not contain these receptors.

All breast cancers, with the exception of lobular carcinoma in situ, should be tested for hormone receptors. Each woman should
ask her doctor for these test results, and if hormone-like drugs or blocking her own hormones should be part of her treatment.

HER2: About 15-20% of breast cancers have too much of a growth-promoting protein called HER2 and too many copies (more than 2) of the gene that instructs the cells to produce this protein. Tumors with increased levels of HER2 are referred to as “HER2-positive.”

HER2-positive breast cancer tumors tend to grow and spread more rapidly than other breast cancers. Trastuzumab and lapatinib are two available treatments that specifically target HER2-positive tumors and block HER2 from stimulating breast cancer cell growth. (See discussion of targeted therapy on page 28.) Recent studies have shown that trastuzumab given after breast cancer surgery for HER2-positive tumors reduces the risk of recurrence when the tumor measures larger than 1 cm in diameter or when the cancer has spread to the lymph nodes. Another very recent study of women with advanced breast cancer has shown lapatinib to be effective in delaying the growth of HER2-positive tumors after trastuzumab has stopped working. Studies also suggest that chemotherapy containing certain drugs (such as doxorubicin or epirubicin) may be especially effective against breast cancers that are HER2-positive.

Certain therapies are effective only for patients with HER2-positive breast cancers and these treatments have potential side effects associated with them. Therefore, accurate testing to determine the HER2 status of a breast cancer tumor is very important, and an incorrect test result can have serious consequences. The HER2 status of a tumor can be tested using either immunohistochemistry (IHC) or fluorescence in situ hybridization (FISH) testing. IHC testing is used to show how much of the HER2 protein is on the surface of the cancer cells. FISH testing is used to provide information related to the number of copies of the HER2 gene in the tumor cells. There is more than one type of IHC or FISH test which has been shown to give accurate HER2 test results. However, the laboratory doing the test must be an accredited laboratory with quality control procedures in place to ensure that the testing is done properly. Additional testing of the tumor sample should be done if the HER2 test score falls between a “negative” and a “positive” test result (for example, a sample initially tested by IHC would be retested by FISH). In the event that a particular laboratory does not meet quality assurance standards for testing, the tumor sample should be sent to another laboratory that meets these standards. If your doctor does not know whether a particular laboratory meets these criteria, you can contact the head of the laboratory in question (often a pathologist) for this information.

Analysis of Gene Profiles of Tumors

Treatment decisions today are primarily based on hormone receptor tumor status, HER2 status, appearance of the cancer under the microscope, size of the breast cancer, and extent of spread of the breast cancer. Recently, there has been interest in looking at specific sets of genes (gene profiles) within breast cancer tumor cells to see if women with breast cancer that has not spread to the lymph nodes can be identified as having either a more favorable outlook (a low chance of cancer recurrence), a less favorable outlook...
(a higher chance of cancer recurrence), or an outlook somewhere between the two (an intermediate chance of cancer recurrence). This type of information has the potential to be particularly helpful when a patient and her doctor are making treatment decisions. In the future it could help determine whether the patient may be likely to benefit from chemotherapy (for example, patients with a poorer outlook would be more likely to benefit from chemotherapy) or whether a patient is likely to do well without chemotherapy. At the present time more studies are needed on this new way to evaluate cancer cells before specific treatment recommendations can be made based upon these types of test results.

Breast cancer grade
Pathologists look at breast cancer cells under a microscope and determine how much they look like normal breast tissue. This is called the grade of the tumor. Cancers that closely resemble normal breast tissue get a lower number grade and tend to grow and spread more slowly. In general, a lower grade number indicates a cancer that is slightly less likely to spread, and a higher number indicates a cancer that is slightly more likely to spread.

Grade is based on the arrangement of the cells in relation to each other, whether they form tubules, how closely they resemble normal breast cells (nuclear grade), and how many of the cancer cells are in the process of dividing (mitotic count). A low grade (Grade 1) cancer may also be called “well-differentiated” because it more closely resembles normal breast cells. Similarly, a high grade tumor (Grade 3) may also be called “poorly differentiated,” since the cells have lost their resemblance to normal breast cells. A moderate grade (Grade 2) cancer is in between low grade and high grade.

The tumor grade is most important in patients who have small tumors with no lymph node involvement. Patients with well-differentiated tumors may require no further treatment, while patients with moderately or poorly differentiated tumors usually receive additional hormonal therapy or chemotherapy.

Ductal carcinoma in situ (DCIS) is graded in a different way. DCIS is given a nuclear grade, which describes how abnormal the part of the cancer cells that contain the genetic material appears. Sometimes other features of DCIS are also used by the pathologist to determine the grade.

Breast Cancer Stages
Cancers are divided into different groups, called stages, based on whether the cancer is invasive or non-invasive, the size of the tumor, how many lymph nodes are involved, and whether there is spread to other parts of the body.

Staging a cancer is the process of finding out how far the cancer has progressed when it is diagnosed. Doctors determine the stage of a cancer by gathering information from physical examinations and tests on the tumor, lymph nodes, and distant organs.

A breast cancer’s stage is one of the most important factors that may predict prognosis (outlook for cure versus the chance of cancer coming back or spreading to other organs). A cancer’s stage, therefore, is an important factor in choosing the best treatment.
Each woman’s outlook with breast cancer differs, depending on the cancer’s stage and other factors such as hormone receptors, her general state of health, and her treatment.

You should talk frankly with your doctors about your cancer stage and prognosis, and how they affect treatment options.

System to Define Cancer Stage
The system most often used to describe the extent of breast cancer is the TNM staging system. In TNM staging, information about the tumor (T-Stage), nearby lymph nodes (N-Stage), and distant metastases (M-Stage) is combined and a stage is assigned to specific TNM groupings. The TNM stage groupings are described using Roman numerals from 0 to IV.

The clinical stage is determined by what the doctor learns from the physical examination and tests. The pathologic stage includes the findings of the pathologist after surgery. Most of the time, pathologic stage is the most important stage since involvement of the lymph nodes can only be accurately determined by examining them under a microscope.

T stands for the size of the cancer (measured in centimeters: 2.5 centimeters = 1 inch) and whether it is growing directly into nearby tissues. N stands for spread to nearby lymph nodes and M is for metastasis (spread to other parts of the body).

Categories of T, N, and M

T Categories
T categories are based on the size of the breast cancer and whether it has spread to nearby tissue.

Tis: Tis is used only for carcinoma in situ or non-invasive breast cancer, such as ductal carcinoma in situ (DCIS) or lobular carcinoma in situ (LCIS).

T1: The cancer is 2 cm in diameter (about \(\frac{3}{4}\) inch) or smaller.

T2: The cancer is more than 2 cm but not more than 5 cm in diameter.

T3: The cancer is more than 5 cm in diameter.

T4: The cancer is any size and has spread to the chest wall or the skin.

Categories of T, N, and M

Tumor Sizes

- 1 cm
- 2 cm
- 3 cm
- 5 cm

2.5 centimeters (cm) = 1 inch
1 cm = 10 mm
N Categories

The N category is based on which of the lymph nodes near the breast, if any, are affected by the cancer. There are 2 classifications used to describe N. One is **clinical** — before surgery — in other words, what the doctor can feel or see on imaging studies. The other is **pathological** — what the pathologist can see in lymph nodes removed during surgery.

N0 Clinical: The cancer has not spread to lymph nodes, based on clinical exam.

N0 Pathological: The cancer has not spread to lymph nodes, based on examining them under the microscope.

N1 Clinical: The cancer has spread to lymph nodes under the arm on the same side as the breast cancer. Lymph nodes are not attached to one another or to the surrounding tissue.

N1 Pathological: The cancer is found in 1 to 3 lymph nodes under the arm.

N2 Clinical: The cancer has spread to lymph nodes under the arm on the same side as the breast cancer and the lymph nodes are attached to one another or to the surrounding tissue. Or the cancer can be seen to have spread to the *internal mammary lymph nodes* (next to the sternum), but not to the lymph nodes under the arm.

N2 Pathological: The cancer has spread to 4 to 9 lymph nodes under the arm.

N3 Clinical: The cancer has spread to lymph nodes above or just below the collarbone on the same side as the cancer, and may or may not have spread to lymph nodes under the arm. Or the cancer has spread to internal mammary lymph nodes and lymph nodes under the arm, both on the same side as the cancer.

N3 Pathological: The cancer has spread to 10 or more lymph nodes under the arm or also involves lymph nodes in other areas around the breast.

M Categories

The M category depends on whether the cancer has spread to any distant tissues and organs.

M0: No distant cancer spread.

M1: Cancer has spread to distant organs.

Stage Grouping for Breast Cancer

Once the T, N, and M categories have been assigned, this information is combined to assign an overall stage of 0, I, II, III or IV as seen in the table on the next page. The stages identify tumor types that have a similar outlook and are treated in a similar way.

Breast Cancer Treatment

Breast cancer treatment includes treatment of the breast and treatment for cancer cells that may have spread to other parts of the body. The breast itself is treated by surgery, often in combination with radiation. The lymph nodes in the armpit are also studied to see if the breast cancer has spread. The treatment for cancer cells that may have spread beyond the breast and lymph nodes in the armpit is a combination of either *hormone therapy* and/or *chemotherapy*.
Surgery
Most women with breast cancer will have surgery. The 2 common types of surgery are breast-conserving surgery and mastectomy.

Breast-Conserving Surgery
Lumpectomy removes only the breast lump and a rim of normal surrounding breast tissue. Partial or segmental mastectomy or quadrantectomy removes more breast tissue than a lumpectomy (up to one-quarter of the breast). If cancer cells are present at the outside edge of the removed breast tissue (the margin), more surgery is usually needed to remove any remaining cancer. Most often this additional surgery is a repeat lumpectomy, but sometimes it requires removal of the entire breast (mastectomy).

Radiation therapy is usually given after these types of surgery. Side effects of these operations include temporary swelling and tenderness and hardness due to scar tissue that may form in the surgical site.

For most women with stage I or II breast cancer, breast-conserving therapy (lumpectomy and radiation therapy) is as effective as mastectomy. Survival rates of women treated with these 2 approaches are the same. However, breast conservation therapy is not an option for all women with breast cancer. (See the discussion, “Choosing Between Breast-Conserving Therapy and Mastectomy” on page 20.) Those who may not have breast-conserving therapy include:

Breast Cancer Stages

<table>
<thead>
<tr>
<th>Overall Stage</th>
<th>T category</th>
<th>N category</th>
<th>M category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIA</td>
<td>T0</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIB</td>
<td>T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIIA</td>
<td>T0</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIIB</td>
<td>T4</td>
<td>Any N</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIIC</td>
<td>Any T</td>
<td>N3</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

• Women who have had prior radiation therapy of the affected breast or chest
• Women with suspicious abnormalities that appear to be cancerous and are widespread throughout the breast
• Women whose lumpectomy, including any possible repeat lumpectomy when needed, cannot completely remove their cancer with a satisfactory cosmetic result
• Pregnant women who would require radiation while still pregnant

There are other groups of women for whom breast-conserving therapy is not strictly ruled out, but for whom the risks associated with this treatment are higher. (For example, they may have an increased likelihood of experiencing recurrent breast cancer or side effects from radiation.) These groups include:
• Women with active connective tissue disease involving the skin (especially scleroderma and lupus)
• Women with tumors greater than 5 cm
• Women who after lumpectomy have a very limited amount of cancer at the edge of the pathology specimen
• Women who are 35 years of age or less
• Women who have not yet gone through menopause and have a known BRCA1 or BRCA2 gene mutation

The last 2 groups of women have a higher risk of breast cancer recurring in the breast in which the cancer was originally found and also in the opposite breast when compared to older women and women without gene mutations associated with breast cancer. For this reason, these women may consider the option of surgical removal of both breasts (double mastectomy) to decrease their future risk of breast cancer.

Radiation therapy as a part of breast-conserving therapy for invasive cancer can sometimes be omitted. Women who may consider lumpectomy without radiation therapy have all of the following:
• age 70 years or older; and
• a tumor 2 cm or less that has been completely removed; and
• a tumor that contains hormone receptors; and
• no lymph node involvement; and
• who receive treatment with hormone therapy

Mastectomy
Mastectomy is removal of the entire breast, including the nipple. Mastectomy is needed for some cases, and some women choose mastectomy rather than lumpectomy. (See the discussion "Choosing Between Breast-Conserving Therapy and Mastectomy" on page 20.)

Different words are used to describe mastectomy depending on the extent of the surgery done in the armpit and the muscles under the breast. In a simple or total mastectomy the entire breast is removed, but no lymph nodes from under the arm or muscle tissue from beneath the breast is removed. In a modified radical mastectomy, the entire breast and some axillary (underarm) lymph nodes are removed. In a radical mastectomy, all the muscle under the breast is also removed. Radical mastectomy is rarely used today because for most women, this surgery is not any more effective than the more limited forms of mastectomy.
Choosing Between Breast-Conserving Surgery and Mastectomy

The advantage of breast-conserving surgery (lumpectomy) is that it preserves the appearance of the breast. A disadvantage is the need for several weeks of radiation therapy after surgery. However, some women who have a mastectomy will also need radiation therapy. Women who choose lumpectomy and radiation can expect the same chance of survival as those who choose mastectomy.

Although most women and their doctors prefer lumpectomy and radiation therapy, your choice will depend on a number of factors, such as:

- how you feel about losing your breast
- whether you want to devote the additional time and travel for radiation therapy
- whether you would want to have more surgery to reconstruct your breast after having a mastectomy
- your preference for mastectomy as a way to “take it all out as quickly as possible”

In determining your preference for lumpectomy or mastectomy, be sure to get all the facts. Though you may have a gut feeling for mastectomy to “take it all out as quickly as possible,” the fact is that doing so does not provide any better chance of long term control or a better outcome of treatment in most cases. Large research studies with thousands of women participating, and over 20 years of information show that when lumpectomy can be done, mastectomy does not provide any better chance of survival from breast cancer than lumpectomy plus radiation. It is because of these facts that most women today do not have their breast removed.

Reconstructive Surgery

If a woman has a mastectomy, she may want to consider having the breast rebuilt; this is called breast reconstruction. This requires additional surgery to create the appearance of a breast after mastectomy. The breast can be reconstructed at the same time the mastectomy is done (immediate reconstruction) or at a later date (delayed reconstruction). Surgeons may use silicone or saline-filled implants, or tissue from other parts of your body.

How do a woman and her doctor decide on the type of reconstruction and when she should have the procedure? The answer depends on the woman’s personal preferences, the size and shape of her breasts, the size and shape of her body, her level of physical exercise, details of her medical situation (such as how much skin is removed), and if she needs chemotherapy or radiation.

If you are thinking about breast reconstruction, please discuss this with your doctor when you are planning your treatment.

Lymph Node Surgery

In the treatment of invasive cancer, whether a woman has a mastectomy or lumpectomy, she and her doctor usually need to know if the cancer has spread to the lymph nodes. When the lymph nodes are affected, there is an increased likelihood that cancer cells have spread through the bloodstream to other parts of the body.
Doctors once believed that removing as many lymph nodes as possible would reduce the risk of cancer spreading to other places and improve a woman’s chances for long-term survival. We now know that removing the lymph nodes probably does not improve the chance for long-term survival. But knowing whether lymph nodes are involved is important in selecting the best treatment to prevent cancer recurrence.

The only way to accurately determine if lymph nodes are involved is to remove and examine them under the microscope. This means removing some or all of the lymph nodes in the armpit. Two different surgical procedures are used to remove the lymph nodes: a sentinel lymph node biopsy and an axillary lymph node dissection. When an axillary lymph node dissection is done, all of the lymph nodes in the armpit are removed. The sentinel lymph node biopsy is a more limited surgery that only removes a few lymph nodes and is associated with fewer side effects.

For some women with invasive cancer, removing the underarm lymph nodes is optional. This includes:

- women with tumors so small and with such a favorable outlook that lymph node spread is unlikely
- instances where it would not affect whether adjuvant treatment is given
- elderly women
- women with serious medical conditions

Lymph node surgery is not necessary with pure ductal carcinoma in situ or pure lobular carcinoma in situ. A sentinel node biopsy may be done if the woman is having surgery (such as mastectomy) that would make it impossible to do the sentinel node biopsy procedure if invasive cancer were found in the tissue removed during the surgery.

The surgical technique used to remove lymph nodes from under the armpit depends on the personal circumstances of the patient. If there are enlarged lymph nodes with apparent spread of the cancer, or the lymph nodes are otherwise found to be involved with cancer, then complete axillary lymph dissection is necessary. However, for women with no apparent signs of cancer spread to the lymph nodes who have not received prior chemotherapy or hormone therapy, the sentinel lymph node biopsy is the preferred procedure because it is associated with fewer side effects (See the discussion, “Side Effects of Lymph Node Surgery” on page 22.) and is as effective as axillary lymph node dissection in finding cancer in the lymph nodes.

In the sentinel lymph node biopsy procedure, the surgeon finds and removes the “sentinel nodes,” the first few lymph nodes into which a tumor drains. These are the lymph nodes most likely to contain cancer cells. To find these so-called “sentinel lymph nodes,” the surgeon injects a radioactive substance and/or a blue dye under the nipple or into the area around the tumor. Lymphatic vessels carry these substances into the sentinel lymph nodes and provide the doctor with a “lymph node map.” The doctor can either see the blue dye or detect the radioactivity with a Geiger counter. The surgeon then removes the marked nodes for examination by the pathologist.
If the sentinel node contains cancer, the surgeon removes more lymph nodes in the armpit (axillary dissection). This may be done at the same time or several days after the original sentinel node biopsy. If the sentinel node is cancer-free, the patient will not need more lymph node surgery and can avoid the side effects of full lymph node surgery. However, this limited sampling of lymph nodes is not appropriate for some women.

Since the sentinel lymph node biopsy is relatively new, not all surgeons have experience performing this procedure. Even though the sentinel lymph node biopsy is the preferred method of lymph node surgery for most women without apparent signs of cancer spread to the lymph nodes, it should be considered only if it will be done by a team experienced with this technique. If you are an appropriate candidate for a sentinel lymph node biopsy, but an experienced sentinel lymph node team is not initially available, discuss the possibility of a referral to such a team with your doctor.

Side Effects of Lymph Node Surgery

Side effects of lymph node surgery can be bothersome to many women. The side effects can occur with either the full axillary lymph node dissection or with sentinel lymph node biopsy. Side effects are much less common and less severe with the sentinel lymph node procedure.

Side effects of lymph node surgery include:
- temporary or permanent numbness of the skin on the inside of the upper arm
- temporary limitation of arm and shoulder movements
- swelling of the breast and arm called **lymphedema**

Lymphedema is the most significant of these side effects. If it develops it may be permanent. Most women who develop lymphedema find it bothersome but not disabling. No one can predict which patients will develop this condition or when it will develop. Lymphedema can develop just after surgery, or even months or years later. Significant lymphedema occurs in about 13% of women who have axillary lymph node dissection and in up to 5% of women who have sentinel lymph node biopsy.

With care, patients can take steps to help avoid lymphedema or at least keep it under control. Talk to your doctor for more details.

Some of the steps to take to help avoid lymphedema include:
- Avoid having blood drawn from or IV’s inserted into the arm on the side of the lymph node surgery.
- Do not allow a blood pressure cuff to be placed on that arm. If you are in the hospital, tell all health care workers about your arm.
- If your arm or hand feels tight or swollen, don’t ignore it. Tell your doctor immediately.
- If needed, wear a well-fitted compression sleeve.
- Wear gloves when gardening or doing other things that are likely to lead to cuts.

For more information on lymphedema, call the American Cancer society at 1-800-ACS-2345 and ask for *Lymphedema: What Every Women With Breast Cancer Should Know.*
Radiation Therapy

Radiation therapy uses a beam of high-energy rays (or particles) to destroy cancer cells left behind in the breast, chest wall, or lymph nodes after surgery. Radiation may also be needed after mastectomy in cases with either a large breast tumor, or when cancer is found in the lymph nodes.

This type of treatment can be given in several ways.

- **External beam radiation** delivers radiation from a machine outside the body. This is the typical radiation therapy given after lumpectomy and is given to the entire breast with an extra dose (“boost”) to the site of the tumor. It is usually given 5 days a week for a course of 6 to 7 weeks.

- **Brachytherapy**, also called internal radiation or interstitial radiation, describes the placement of radioactive materials (often called “seeds”) in or near where the tumor was removed. They may be placed in the lumpectomy site to “boost” the radiation dose in addition to external beam radiation therapy.

Recently there has been interest in limiting radiation therapy only to the site of the lumpectomy, referred to as partial breast irradiation. This is based on the observation that when breast cancer recurs in the breast, the most common place is in the site of the original tumor. Brachytherapy is one technique of partial breast irradiation. External beam radiation therapy also can be used to deliver partial breast irradiation.

The extent of radiation depends on whether or not a lumpectomy or mastectomy was done and whether or not lymph nodes are involved. If a lumpectomy was done, the entire breast receives radiation with an extra boost of radiation to the area in the breast where the cancer was removed to prevent it from coming back in that area.

If the surgery was mastectomy, radiation is given to the entire area of the skin and muscle where the mastectomy was done if the tumor was over 5 cm in size, or if the tumor was close to the edge of the removed mastectomy tissue.

In patients who have had lumpectomy or mastectomy, further radiation may be recommended if the cancer has spread to the lymph nodes. Radiation may be given to the area just above the collarbone and along the breastbone, depending on the number and location of involved lymph nodes.

Side effects most likely to occur from radiation include swelling and heaviness in the breast, sunburn-like skin changes in the treated area, and fatigue. Changes to the breast tissue and skin usually go away in 6 to 12 months. In some women, the breast becomes smaller and firmer after radiation therapy. There may also be some aching in the breast, and rarely a rib fracture or second cancer may be caused by the radiation.

Systemic Treatment

To reach cancer cells that may have spread beyond the breast and nearby tissues, doctors use drugs that can be given by pills or by injection. This type of treatment is called systemic therapy. Examples of systemic treatment include chemotherapy, hormone ther-
apy, and other types of targeted therapy. Targeted therapies such as hormonal therapy are only helpful if the tumor is hormone receptor-positive, and targeted therapies such as trastuzumab and lapatinib are only effective if the tumor is HER2-positive. (See discussion of targeted therapy on page 23.)

Even in the early stages of the disease, cancer cells can break away from the breast and spread through the bloodstream. These cells usually don’t cause symptoms, they don’t show up on an x-ray, and they can’t be felt during a physical examination. But if they are allowed to grow, they can establish new tumors in other places in the body. Systemic treatment given to patients who have no evidence of spread of cancer but who are at risk of developing spread of the cancer is called adjuvant therapy. The goal of adjuvant therapy is to kill undetected cancer cells that have traveled from the breast.

Women who have invasive breast cancer should receive adjuvant therapy, except those with very small or well-differentiated tumors. For example, women with hormone receptor-positive disease will receive hormone therapy, and women with HER2-positive tumors greater than 1 cm in diameter or with involvement of lymph nodes will receive targeted therapy with trastuzumab. Chemotherapy may also be recommended based on the size of the tumor, grade of the tumor, and presence or absence of lymph node involvement. For women with breast cancers with hormone receptor-negative tumors, hormone therapy is not effective and in women with HER2-negative tumors, trastuzumab is not effective. In women with tumors that are hormone receptor- and HER2-negative, the only decision is whether or not to receive chemotherapy.

In most cases, systemic treatment is given soon after surgery using the results of the surgery and pathology evaluation to determine the best choice treatment. In some cases, the systemic therapy is given to patients after a needle biopsy, but before lumpectomy or mastectomy. This preoperative chemotherapy is called neoadjuvant treatment. Oncologists give patients neoadjuvant treatment to try to shrink the tumor enough to make surgical removal easier. This may allow women who would otherwise need mastectomy to have breast-conserving surgery.

For women whose breast cancer has spread to other organs in the body (metastases), systemic treatment is the main treatment. This treatment may be chemotherapy, hormone therapy, other types of targeted therapy, or a combination of these types of therapy.

Chemotherapy

Chemotherapy uses drugs that are toxic to and often kill cancer cells. Usually these cancer-fighting drugs are given intravenously (injected into a vein) or by mouth. Either way, the drugs travel through the bloodstream to the entire body. Doctors who prescribe these drugs (medical oncologists) sometimes use only a single drug and other times use a combination of drugs.

When chemotherapy is given after surgery for early stage breast cancer, it is called adjuvant chemotherapy. Sometimes chemotherapy is given before surgery. This is called neoadjuvant chemotherapy. In most cases, adjuvant or neoadjuvant chemotherapy is most effective when combinations of drugs are used.
together. Chemotherapy may also be given to treat breast cancer that has spread to places other than the breast or lymph nodes. Both single drugs and combinations of drugs are often used in the treatment of breast cancer that has spread. Clinical research studies over the last 30 years have determined which chemotherapy drugs are most effective. With continued research, even better combinations may be discovered.

Listed on the next page are common combinations of adjuvant chemotherapy drugs, divided into combinations for women with HER2-positive tumors and HER2-negative tumors. There are also lists of common chemotherapy options for women who have recurrent breast cancer or metastatic breast cancer.

Chemotherapy Drugs Commonly Used to Treat Breast Cancer

<table>
<thead>
<tr>
<th>Brand Name</th>
<th>Generic Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adriamycin®</td>
<td>Doxorubicin</td>
</tr>
<tr>
<td>Cytoxan®</td>
<td>Cyclophosphamide</td>
</tr>
<tr>
<td>Ellence®</td>
<td>Epirubicin</td>
</tr>
<tr>
<td>Navelbine®</td>
<td>Vinorelbine</td>
</tr>
<tr>
<td>Taxol®</td>
<td>Paclitaxel</td>
</tr>
<tr>
<td>Taxotere®</td>
<td>Docetaxel</td>
</tr>
<tr>
<td>Xeloda®</td>
<td>Capecitabine</td>
</tr>
<tr>
<td>Gemzar®</td>
<td>Gemcitabine</td>
</tr>
</tbody>
</table>

Doctors give chemotherapy in cycles, with each period of treatment followed by a rest period. The chemotherapy is given on the first day of each cycle (and sometimes on other days of the cycle), and then the body is given time to recover from the effects of chemotherapy. The chemotherapy drugs are then repeated to start the next cycle. The time between giving the chemotherapy drugs varies according to the specific chemotherapy drug or combination of drugs. Adjuvant chemotherapy usually lasts for a total time of 3 to 6 months depending on the drugs used.

The side effects of chemotherapy depend on the type of drugs used, the amount taken, and the length of treatment. Some women have many side effects while other women have few side effects.

- Doxorubicin and epirubicin may cause heart damage but this is uncommon in people who do not have a history of heart disease. If you know you have heart disease or there is concern you might have heart disease, your doctor may suggest special heart tests before you use these drugs and may suggest other chemotherapy drugs if your heart function is weakened.
- Temporary side effects often include loss of appetite, nausea and vomiting, fatigue, mouth sores, and hair loss.
- Chemotherapy may cause menstrual cycles to stop either temporarily or permanently.
- Lowering of the blood counts from chemotherapy is the most common serious side effect of chemotherapy. Chemotherapy does this by damaging the blood producing cells of the bone marrow. A drop in white blood cells can raise a patient’s risk of infection; a shortage of blood platelets can cause bleeding or bruising after minor cuts or injuries; and a decline in red blood cells can lead to fatigue.
There are treatments for these side effects. There are excellent drugs that prevent or at least reduce nausea and vomiting. A group of drugs, called growth factors, stimulate the production of white blood cells or red blood cells and can help bone marrow recover after chemotherapy and prevent problems resulting from low blood counts. Although these drugs are often not necessary, doctors have been using them to allow them to give the chemotherapy more often. Talk with your doctor about which treatment will be right for you.
Chemotherapy Regimens for Recurrent or Metastatic Breast Cancer

Preferred Single Agents

- Doxorubicin
- Epirubicin
- Pegylated liposomal doxorubicin
- Paclitaxel
- Docetaxel
- Vinorelbine
- Gemcitabine
- Albumin-bound paclitaxel

Preferred Combinations

- CAF/FAC (cyclophosphamide/doxorubicin/fluorouracil)
- FEC (fluorouracil/epirubicin/cyclophosphamide)
- AC (doxorubicin/cyclophosphamide)
- EC (epirubicin/cyclophosphamide)
- AT (doxorubicin/docetaxel; doxorubicin/paclitaxel)
- CMF (cyclophosphamide/methotrexate/fluorouracil)
- Docetaxel/capecitabine
- GT (gemcitabine/paclitaxel)

Preferred Agents with Bevacizumab

- Paclitaxel

Other Active Agents

- Cisplatin
- Carboplatin
- Etoposide (in pill form)
- Vinblastine
- Fluorouracil as continuous intravenous infusion

Preferred Chemotherapy Regimens in Combination with Trastuzumab

(for HER2-positive metastatic disease)

- Paclitaxel with or without carboplatin
- Docetaxel
- Vinorelbine

Preferred Chemotherapy Regimen in Combination with Lapatinib

(for HER2-positive metastatic disease)

- Capecitabine
Ask your doctor or call the American Cancer Society and ask for a copy of specific guidelines for treating many of the side effects caused by chemotherapy, such as *Nausea and Vomiting Treatment Guidelines for Patients with Cancer* and *Fever and Neutropenia Treatment Guidelines for Patients with Cancer*.

Premenopausal women will often develop early menopause and infertility from chemotherapy drugs. The older a woman is when she receives chemotherapy, the more likely it is she will stop menstruating or lose her ability to become pregnant. Some chemotherapy drugs are more likely to do this than others. However, you cannot depend on chemotherapy to prevent pregnancy, and getting pregnant while receiving chemotherapy could lead to birth defects and interfere with treatment. Therefore, premenopausal women should use non-hormonal forms of birth control while receiving chemotherapy. It is safe to have children after chemotherapy and certain types of chemotherapy can be given in the second and third trimester of pregnancy to women who are diagnosed with breast cancer during pregnancy (See discussion of breast cancer in pregnancy on page 31), but it’s not safe to get pregnant while on treatment.

Targeted Therapy

Targeted therapy is a form of treatment that attacks specific sites and/or processes that are important to the function of cancer cells. In many cases of targeted therapy, higher levels of the target (for example, the HER2 receptor) in the cancer cells are associated with greater benefit for the patient when the therapy (such as, trastuzumab) is given.

Trastuzumab (Herceptin®) is a *monoclonal antibody* therapy that targets the HER2 receptor that is on the surface of the breast cancer cells of some patients. Trastuzumab is an important treatment option for some patients with HER2-positive tumors. It may be used as adjuvant therapy with chemotherapy to reduce the risk of recurrent breast cancer, as neoadjuvant therapy combined with chemotherapy to shrink the size of the tumor before surgery, or as treatment for metastatic breast cancer. Trastuzumab can cause heart damage and should be used cautiously when combined with other heart damaging drugs, such as doxorubicin and epirubicin.

Bevacizumab (Avastin®) is another monoclonal antibody that may be used in patients with metastatic breast cancer. It is used in combination with the chemotherapy drug paclitaxel. Bevacizumab works by preventing the growth of new blood vessels that supply tumor cells with the blood, oxygen, and other nutrients they need to grow. Bevacizumab can cause side effects such as a delay in wound healing with bleeding, high blood pressure, or kidney damage.

Lapatinib (Tykerb®) is another type of targeted therapy for patients with advanced or metastatic breast cancer. This drug is taken orally and is used in combination with another oral drug, capecitabine. It works by getting inside cells and interfering with processes involving both the HER2 receptor and another cell surface receptor called HER1. Use of lapatinib may cause certain side effects such as diarrhea and acne.
Hormone Therapy

Hormone therapy is a type of targeted therapy that targets the hormone receptors of cancer cells. Estrogen, a hormone produced mostly by the ovaries, but also from hormones produced by the adrenal glands and fat tissue in a woman’s body, causes some breast cancers to grow. Several approaches can be used to block the effect of estrogen or to lower estrogen levels. These approaches can be divided into two main groups:

- Drugs that block the effect of estrogen on cancer cells, called anti-estrogens. These medicines do not decrease estrogen levels; instead, they prevent estrogen from causing the breast cancer cells to grow.
- Drugs or treatments that lower the production of estrogen in the body.

These treatments are used in two situations:

- Women who have hormone receptor-positive breast cancer that appears to have been completely removed by surgery. This adjuvant therapy reduces the risk of recurrent breast cancer or the spread of breast cancer to other parts of the body. Adjuvant therapy may also include chemotherapy or trastuzumab.
- Women with hormone receptor-positive breast cancer that has spread to other parts of the body or in whom the cancer has come back.

Hormone drugs are only effective in women with breast cancer tumors that have increased levels of estrogen or progesterone receptors. Every breast cancer should be tested for these receptors, and you should ask your doctor for the results of this test on your cancer. If the cancer is negative for both these receptors, then the hormone drugs are of no benefit.

Often a combination of hormone therapy and chemotherapy is used in the treatment of breast cancer.

Hormone therapy is often recommended for a period of 5 years or longer when used as adjuvant treatment. It can also be used for long periods of time in the treatment of metastatic breast cancer. If you are taking hormone therapy, it is very important that the pills be taken according to the recommendations of your doctor and pharmacist. Although hormone therapy can have side effects and the benefits of the treatment may not be readily apparent, it is very important that you do not compromise your care by stopping the drug or by skipping days or weeks of therapy without telling your doctor. If you are experiencing side effects, discuss these with your cancer treatment team.

Anti-Estrogen Drugs

Tamoxifen is the antiestrogen drug used most often. Taking tamoxifen as adjuvant therapy after surgery, usually for five years, reduces the chance of hormone receptor-positive breast cancer (for example, invasive breast cancer or DCIS) coming back. Tamoxifen is also used to treat metastatic breast cancer, and to reduce the risk of breast cancer in pre- and post-menopausal women with LCIS.

In many women, tamoxifen causes the symptoms of menopause, including hot flashes, vaginal discharge, and mood swings. Tamoxifen has two rare, but more serious
side effects. These are a slightly increased risk of developing cancer of the lining of the uterus (endometrial cancer) and uterine sarcoma, and a slightly increased risk of developing blood clots. For most women with breast cancer, the benefits of taking the drug far outweigh the risks.

Toremifene (Fareston®) is another anti-estrogen closely related to tamoxifen. It may be an option for postmenopausal women with metastatic breast cancer.

Fulvestrant (Faslodex®) is a newer drug that reduces the number of estrogen receptors. It is often effective in postmenopausal women even if the breast cancer is no longer responding to tamoxifen. Hot flashes, mild nausea and fatigue are the major side effects of fulvestrant.

Raloxifene (Evista®) is a drug that acts as an antiestrogen on breast tissue. It is used to reduce the risk of breast cancer in postmenopausal women with LCIS, but is not used to treat DCIS or invasive breast cancer.

The aromatase inhibitors have been compared with tamoxifen as adjuvant hormone therapy. They have fewer side effects than tamoxifen because they don’t cause cancer of the uterus and very rarely cause blood clots. They can, however, cause loss of calcium from bone and bone fractures because they remove all estrogen from a postmenopausal woman. They also may cause hot flashes and sometimes joint pain.

The aromatase inhibitors are more effective than tamoxifen alone in preventing breast cancer from coming back in postmenopausal women. Based on recent studies, many doctors recommend including an aromatase inhibitor in the adjuvant hormone treatment of postmenopausal women with hormone receptor-positive breast cancer.

Hormone Therapy and Menopause

As discussed above, the aromatase inhibitors are not recommended for premenopausal women. Therefore, determining whether the patient is menopausal is important in making treatment decisions. This is not as simple as it may sound, because menstrual periods can stop as a side effect of treatment while the ovaries continue to make estrogen. Also, sometimes chemotherapy stops the ovaries from making estrogen for a short period of time, but when the ovaries recover from the chemotherapy they start making estrogen again. Therefore, if the use of an aromatase inhibitor is considered in a young women who has intact ovaries, repeated monitoring of hormone levels such as estradiol and follicle-stimulating hormone (FSH) may be required to make sure that the woman is truly postmenopausal.
Ovarian Ablation
The ovaries are the source of most estrogen in premenopausal women. Destroying or blocking the ability of the ovaries to produce estrogen (called ablation) may be an effective hormone therapy to treat premenopausal women with cancers that are positive for the estrogen or progesterone receptors. Destruction or blockage of the ovary production of estrogen can be done in a number of ways:

- The ovaries can be removed by surgery (oophorectomy).
- Radiation therapy can be given to the ovaries.
- Drugs called LHRH (luteinizing hormone-releasing hormone) agonists or antagonists prevent estrogen production by the ovaries. These include goserelin (Zoladex®) and leuprolide (Lupron® or Eligard®). However, if a woman was premenopausal before taking these drugs, it is not possible to determine if she has become postmenopausal while she is still receiving this type of therapy.

Bisphosphonates
Bisphosphonates are used in breast cancer treatment to strengthen bones that have been weakened by invading breast cancer cells. The most commonly used bisphosphonates in breast cancer treatment are pamidronate (Aredia®) and zoledronate (Zometa®). These drugs are not used unless cancer has spread to the bone.

Hormonal treatment with the aromatase inhibitors may also weaken the bones by causing loss of calcium from the bone (called osteoporosis) and thus increase the risk of a fracture. Therefore, patients treated with an aromatase inhibitor should have their bone strength tested (called a bone density test) to determine if medication to strengthen their bones would be appropriate. Some patients may go into early menopause due to the side effects of chemotherapy. Menopause is associated with bone loss, too. These patients may also undergo a bone density test to evaluate the presence of osteoporosis. There are a number of medications, including some oral forms of bisphosphonates, to treat the loss of calcium from bone that is not caused by direct breast cancer in the bone. Talk with your doctor about whether one of these medications is right for you.

Treatment of Breast Cancer During Pregnancy
Breast cancer is diagnosed in about 1 pregnant woman out of 3,000. Radiation therapy during pregnancy is known to increase the risk of birth defects, so it is not recommended for pregnant women with breast cancer.

For this reason, breast conservation therapy (lumpectomy and radiation therapy) is not considered an option if radiation cannot be delayed until it is safe to deliver the baby. However, breast biopsy procedures and even modified radical mastectomy are safe for the mother and fetus.
Treatment of Pain and Other Symptoms

Most of this booklet discusses ways to remove or destroy breast cancer cells or to slow their growth. But helping you feel as well as you can and continuing to do the things you enjoy doing are important goals, too. Don’t hesitate to discuss your symptoms or how you feel with your cancer care team. There are effective and safe ways to treat pain, other symptoms of breast cancer, and most of the side effects caused by breast cancer treatment. If you don’t tell your health care team, they may have no way of knowing about your problems.

Complementary and Alternative Therapies

Complementary and alternative medicines are different kinds of health care practices, systems, and products that are not part of your usual medical treatment. They may include Chinese herbs, special supplements, acupuncture, massage, and a host of other types of treatment. You may hear about all sorts of these treatments from your family and friends. People may offer all sorts of suggestions, such as vitamins, herbs, stress reduction, and more, as a treatment for your cancer or to help you feel better. Most of these methods are of unproven value in the treatment of cancer, although some have been tested in people with cancer.

The American Cancer Society defines complementary medicine or methods as those that are used along with your regular medical care. If these treatments are carefully chosen and managed, they may add to your comfort and well-being. Some of these methods have been tested, while others have not. Some have shown possible benefit, while others have not proven helpful. Some of these treatments have harmful effects as well.

Alternative medicines are defined as those that are used instead of regular medical care. Even though some of these methods have proven not to be helpful, and some have even proven harmful, they are often still promoted as “cures.” If you choose these alternatives, it is important to know that even the methods that do not cause harm may reduce your chance of fighting your cancer by delaying or replacing regular, proven forms of cancer treatment.

There is a great deal of interest today in complementary and alternative treatments for cancer. Many are being studied to find out if they are helpful to people with cancer.

Before changing your treatment or adding any of these methods, it is best to discuss this openly with your doctor or nurse. Some methods can be safely used along with standard medical treatment. Others, however, can interfere with standard treatment or cause serious side effects. More information about specific complementary and alternative methods of cancer treatment is available through the American Cancer Society’s toll-free number at 1-800-ACS-2345 or on our Web site at www.cancer.org.
Other Things to Consider During and After Treatment

During and after your treatment for breast cancer you may be able to speed up your recovery and improve your quality of life by taking an active role in your care. Learn about the benefits and drawbacks of each of your treatment options, and talk to your cancer care team if there is anything you do not understand. Learn about and look out for side effects of treatment, and report these to your cancer care team right away so they can take steps to ease them and shorten their duration.

Remember that your body is as unique as your personality and your fingerprints. Although understanding your cancer’s stage and learning about your treatment options can help predict what health problems you may face, no one can say for sure how you will respond to cancer or its treatment. You may have special strengths such as a habit of excellent nutrition and physical activity, a strong family support system, or a deep faith, and these strengths may make a difference in how you respond to cancer treatment. There are also experienced professionals in mental health services, social work services, and pastoral services who may help you and your family in coping with your illness.

You can also help in your own recovery from cancer by making healthy lifestyle choices. If you use tobacco, stop now. Quitting will improve your overall health and the full return of the sense of smell may help you enjoy a healthy diet during recovery. If you use alcohol, limit how much you drink. Have no more than 1 drink per day. Good nutrition can help you get better after treatment. Eat a nutritious and balanced diet, with plenty of fruits, vegetables, and whole grain foods. Ask your cancer care team if you may benefit from a special diet or a referral to a dietician (a nutrition expert). Your cancer care team may have special recommendations for people who have had chemotherapy, radiation, or surgery.

If you are being treated for cancer, be aware of the battle that is going on in your body. Radiation therapy and chemotherapy add to the fatigue caused by the disease itself. To help you with the fatigue, plan your daily activities around when you feel your best. Get plenty of sleep at night. And ask your cancer care team about a daily exercise program to help you feel better.

A woman’s choice of treatment will likely be influenced by her age, the image she has of herself and her body, her hopes and fears, and her stage in life. For example, many women select breast-conserving surgery with radiation therapy over a mastectomy for body image reasons. On the other hand, some women who choose mastectomy may want the affected area removed, regardless of the effect on their body image, and others may be more concerned about the side effects of radiation therapy than body image.

Other issues that concern women include loss of hair from chemotherapy and the changes of the breast from radiation therapy. Women on chemotherapy tend to gain weight and it is important to continue to eat a healthy diet and exercise as much as your energy level will permit. In addition to these...
body changes, women may also be concerned about the outcome of their treatment. These are all factors that affect how a woman will make decisions about her treatment, how she views herself, and how she feels about her treatment.

Concerns about sexuality are often very worrisome to a woman with breast cancer. Some treatments for breast cancer can change a woman’s hormone levels and may have a negative impact on sexual interest and/or response. A diagnosis of breast cancer when a woman is in her 20s or 30s is especially difficult because choosing a partner and childbearing are often very important during this period. Relationship issues are also important because the diagnosis can be very distressing for the partner, as well as the patient. Partners are usually concerned about how to express their love physically and emotionally during and after treatment. Talk to your cancer care team about these issues and contact the American Cancer Society for a copy of *Sexuality and Cancer: For the Woman with Cancer and Her Partner*.

Suggestions that may help a woman adjust to changes in her body image include looking at and touching her body; seeking the support of others, preferably before surgery; involving her partner as soon as possible after surgery; and openly talking about the feelings, needs, and wants created by her changed image.

A cancer diagnosis and its treatment are major life challenges; cancer affects you and everyone who cares for you. Almost everyone who has been through cancer can benefit from getting some type of support. What’s best for you depends on your situation and personality. Some people feel safe in peer-support groups or education groups. Others would rather talk in an informal setting, such as church. Others may feel more at ease talking one-on-one with a trusted friend or counselor. Whatever your source of strength or comfort, make sure you have a place to go with your concerns. If you need help with this, contact your hospital’s social service department or the American Cancer Society for help in finding counselors or other services.

Clinical Trials

There are a lot of decisions to make after you find out you have cancer. One of the most important decisions you will make is deciding which treatment is best for you. You may have heard about *clinical trials* being done for your type of cancer. Or maybe someone on your health care team has mentioned a clinical trial to you. Clinical trials are one way to get state-of-the-art cancer care. Still, they are not right for everyone.

Here we will give you a brief review of clinical trials. Talking to your health care team, your family, and your friends can help you make the best treatment choice for you.

What Are Clinical Trials?

Clinical trials are carefully controlled research studies that are done with patients. These studies test whether a new treatment is safe and how well it works in patients, or look at new ways to diagnose or prevent a disease. Clinical trials have led to many advances in cancer prevention, diagnosis, and treatment.
The Purpose of Clinical Trials
Clinical trials are done to get a closer look at promising new treatments or procedures in patients. A clinical trial is only done when there is good reason to believe that the treatment, test, or procedure being studied may be better than the one used now. Treatments used in clinical trials are often found to have real benefits and may go on to become tomorrow’s standard treatment.

Clinical trials can focus on many things, such as:

• new uses of drugs that are already approved by the US Food and Drug Administration (FDA)
• new drugs that have not yet been approved by the FDA
• non-drug treatments (such as radiation therapy)
• medical procedures (such as types of surgery)
• herbs and vitamins
• tools to improve the ways medicines or diagnostic tests are used
• medicines or procedures to relieve symptoms or improve comfort
• combinations of treatments and procedures

Researchers conduct studies of new treatments to try to answer the following questions:

• Is the treatment helpful?
• What’s the best way to give it?
• Does it work better than other treatments already available?
• What side effects does the treatment cause?
• Are there more or fewer side effects than the standard treatment used now?
• Do the benefits outweigh the side effects?
• In which patients is the treatment most likely to be helpful?

Phases of Clinical Trials
There are 4 phases of clinical trials, which are numbered I, II, III, and IV. We will use the example of testing a new cancer treatment drug to look at what each phase is like.

Phase I clinical trials
The purpose of a phase I study is to find the best way to give a new treatment safely to patients. The cancer care team closely watches patients for any harmful side effects.

For phase I studies, the drug has already been tested in lab and animal studies, but the side effects in patients are not fully known. Doctors start by giving very low doses of the drug to the first patients and increase the doses for later groups of patients until side effects appear or the desired effect is seen. Doctors are hoping to help patients, but the main purpose of a phase I trial is to test the safety of the drug.

Phase I clinical trials are often done in small groups of people with different cancers that have not responded to standard treatment or that keep coming back (recurring) after treatment. If a drug is found to be reasonably safe in phase I studies, it can be tested in a phase II clinical trial.

Phase II clinical trials
These studies are designed to see if the drug works. Patients are given the best dose as determined from phase I studies. They are closely watched for an effect on the cancer.
The cancer care team also looks for side effects.

Phase II trials are often done in larger groups of patients with a specific cancer type in whom standard treatments aren’t working. If a drug is found to be effective in phase II studies, it can be tested in a phase III clinical trial.

Phase III clinical trials

Phase III studies involve large numbers of patients — most often those who have just been diagnosed with a specific type of cancer. Phase III clinical trials often enroll hundreds of patients.

Often, these studies are randomized. This means that patients are randomly put in one of two (or more) groups. One group (called the control group) gets the standard, most accepted treatment. Other group(s) get the new one(s) being studied. All patients in phase III studies are closely watched. The study will be stopped early if the side effects of the new treatment are too severe or if one group has much better results than the others.

Phase III clinical trials are usually needed before the FDA will approve a treatment for use by the general public.

Phase IV clinical trials

Once a drug has been approved by the FDA and is available for all patients, it is still studied in other clinical trials (sometimes referred to as phase IV studies). This way more can be learned about short-term and long-term side effects and safety as the drug is used in larger numbers of patients with many types of diseases. Doctors can also learn more about how well the drug works, and if it might be helpful when used in other ways (such as in combination with other treatments).

Deciding to Enter a Clinical Trial

If you would like to take part in a clinical trial, you should begin by asking your doctor if your clinic or hospital conducts clinical trials. There are requirements you must meet to take part in any clinical trial. But whether or not you enter (enroll in) a clinical trial is completely up to you.

Your doctors and nurses will explain the study to you in detail. They will go over the possible risks and benefits and give you a form to read and sign. The form says that you understand the clinical trial and want to take part in it. This process is known as giving your informed consent. Even after reading and signing the form and after the clinical trial begins, you are free to leave the study at any time, for any reason.

Taking part in a clinical trial does not keep you from getting any other medical care you may need.

To find out more about clinical trials, talk to your cancer care team. Among the questions you should ask are:

- Is there a clinical trial that I could take part in?
- What is the purpose of the study?
- What kinds of tests and treatments does the study involve?
- What does this treatment do? Has it been used before?
- Will I know which treatment I receive?
- What is likely to happen in my case with, or without, this new treatment?
• What are my other choices and their pros and cons?
• How could the study affect my daily life?
• What side effects can I expect from the study? Can the side effects be controlled?
• Will I have to stay in the hospital? If so, how often and for how long?
• Will the study cost me anything? Will any of the treatment be free?
• If I am harmed as a result of the research, what treatment would I be entitled to?
• What type of long-term follow-up care is part of the study?
• Has the treatment been used to treat other types of cancers?

How Can I Find Out More About Clinical Trials That Might Be Right For Me?

The American Cancer Society offers a clinical trials matching service for patients, their family, and friends. You can reach this service at 1-800-303-5691 or on our Web site at http://clinicaltrials.cancer.org.

Based on the information you give about your cancer type, stage, and previous treatments, this service can put together a list of clinical trials that match your medical needs. The service will also ask where you live and whether you are willing to travel so that it can look for a treatment center that you can get to.

You can also get a list of current clinical trials by calling the National Cancer Institute's Cancer Information Service toll free at 1-800-4-CANCER (1-800-422-6237) or by visiting the NCI clinical trials Web site at www.cancer.gov/clinicaltrials.

For even more information on clinical trials, the American Cancer Society has a document called Clinical Trials: What You Need to Know. You can read this on the Web site, www.cancer.org, or have it sent to you by calling 1-800-ACS-2345.

NOTES
Decision Trees

The decision trees (or flow charts) on the following pages represent different stages and types of breast cancer. Each one shows you step-by-step how you and your doctor can arrive at the choices you need to make about your treatment.

Keep in mind, this information is not meant to be used without the expertise of your own doctor who is familiar with your situation, medical history, and personal preferences.

The order in which treatment options are listed does not imply a hierarchy (level of importance).

Participating in a clinical trial is an option for women at any stage of breast cancer. Taking part in a study does not prevent you from getting other medical care you may need.

The NCCN guidelines are updated as new significant data become available. To ensure you have the most recent version, consult the Webs sites of the ACS (www.cancer.org) or NCCN (www.nccn.org). You may also call the NCCN at 1-888-909-NCCN or the ACS at 1-800-ACS-2345 for the most recent information on these guidelines. If you have questions about your cancer or cancer treatment, please call the ACS any day, any time at 1-800-ACS-2345.
Stage 0 Lobular Carcinoma in Situ
The work up for lobular carcinoma in situ (LCIS) includes a complete medical history and physical examination. A diagnostic mammogram of both breasts is done to see if there are any other abnormal areas in either breast. Pathology review (another pathologist to look at the biopsy sample) is suggested to be certain you have LCIS and not an invasive cancer or another condition.

LCIS is usually not treated with surgery other than the initial biopsy procedure. Observation (careful follow-up without mastectomy) is the preferred option for most women who are diagnosed with LCIS because LCIS is not an invasive cancer, nor does it normally become one. But women with LCIS have an increased risk of developing invasive breast cancer in either breast. Ways to reduce the risk of breast cancer have become an important option.

There is evidence that tamoxifen or raloxifene, depending on your whether you are pre- or postmenopausal, can lower the risk of developing an invasive breast cancer in women diagnosed with LCIS. This risk is lowered when the drug is taken for a full five years.

A preventive mastectomy of both breasts may be an option for women with LCIS who have a very high risk of developing invasive
breast cancer — for example, women who have many family members with breast cancer. Your doctor can help you decide whether to consider this treatment. You should also consider genetic counseling to see if you have a gene that increases your risk of developing breast cancer before deciding to have a preventive (prophylactic) mastectomy. After mastectomy, breast reconstruction is an option at the same time as the mastectomy or later on.

If you and your doctor decide on observation as the primary treatment for LCIS, the follow-up includes a medical history and physical exam every 6 to 12 months. You should have a mammogram every year unless you choose a double mastectomy. Women taking tamoxifen or raloxifene should have a GYN history and exam every year. These women also should report any unusual symptoms, such as any bleeding from the vagina in postmenopausal women, and bleeding from the vagina occurring at times other than during the menstrual period in premenopausal women. These precautions are not needed if the uterus has been removed (hysterectomy).
Stage 0 Ductal Carcinoma in Situ
The work up for ductal carcinoma in situ (DCIS) begins with a complete medical history and physical examination. Diagnostic mammograms of both breasts should be done to help estimate how far DCIS has spread within the ducts of the breast and to check whether the opposite breast contains any abnormal areas. The NCCN recommends a pathology review (another pathologist to look at the biopsy sample) to be certain you have DCIS and not an invasive cancer or other condition. The tumor should also be tested for hormone receptors. If any evidence of invasive cancer is seen in the biopsy, the woman’s treatment should be according to the decision trees for invasive cancer. (See page 46.)

The NCCN recommends that the margin of normal tissue removed around the DCIS should be at least 1mm or greater, unless the tumor extends to the skin or chest wall, in which case margins less than 1 mm are acceptable.
If DCIS is present in only one area and no cancer is found at the edges of the first surgical excision, the surgical options are either a total mastectomy or a lumpectomy (see the decision tree on the next page). Lymph node surgery (lymph node dissection or sentinel node biopsy) is generally not done with DCIS. If a lumpectomy is chosen, then radiation therapy to the whole breast with a boost to the site of the tumor may or may not be done depending on several factors, such as woman’s age, other health problems, certain characteristics of the tumor (such as size and grade), and the woman’s preference. The NCCN guidelines recommend that patients interested in partial breast irradiation participate in a clinical trial.

Mastectomy provides the most certain local control of DCIS. But studies have shown that women with DCIS who are treated with
lumpectomy and radiation are in no greater danger of dying of breast cancer than those who have a mastectomy. They do, however, have a risk of the cancer coming back in the breast, which would then require a mastectomy. Mastectomy is recommended if the margins of the excision contain cancer and even with repeat surgery the DCIS cannot be completely removed. Radiation is not needed if a mastectomy is done unless the DCIS is at the margin of the mastectomy.

If the mammogram, physical examination or biopsy results show that two or more separate areas of the breast contain DCIS, mastectomy is again recommended. With mastectomy, sentinel lymph node biopsy may be done to be certain there is no invasive cancer present, but an axillary lymph node dissection is not needed.

<table>
<thead>
<tr>
<th>Findings</th>
<th>Primary Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margins negative and tumor is low grade and small (less than 0.5 cm)</td>
<td>Lumpectomy* followed by radiation</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Total mastectomy without lymph node removal and with or without breast reconstruction</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Lumpectomy* without radiation</td>
</tr>
<tr>
<td>Margins negative and tumor is bigger than 0.5 cm</td>
<td></td>
</tr>
<tr>
<td>Margins positive after more surgery</td>
<td>Total mastectomy without lymph node removal with or without breast reconstruction</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Widespread disease</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Patient prefers mastectomy</td>
<td></td>
</tr>
</tbody>
</table>

* Lumpectomy is a type of breast surgery that involves removing the cancerous tissue and a small margin of surrounding tissue, but leaves the rest of the breast intact.
Women with DCIS who are treated with mastectomy can choose to have either immediate or delayed breast reconstruction. Women with DCIS treated with mastectomy, or lumpectomy with or without radiation, and who have estrogen receptor-positive tumors should consider taking tamoxifen for 5 years. In women who have had lumpectomy for DCIS, tamoxifen can lower the risk of developing an invasive breast cancer in the same breast.

Follow-up for women with DCIS includes a medical history and physical exam every 6 months for 5 years, then every year thereafter. They should have yearly mammograms. Because tamoxifen increases endometrial cancer risk, women taking this drug should have a GYN history and exam every year and should promptly report any abnormal vaginal bleeding. These precautions are not needed if the uterus has been removed.

* After lumpectomy, a mammogram is suggested to ensure that the entire tumor has been removed.
Clinical Stage

Work-up (Evaluation)

- Medical history and physical exam
- Blood counts and chemical tests
- Chest x-ray
- Diagnostic mammogram (both breasts), ultrasound as needed
- Breast MRI (with dedicated breast coil) may be considered for women who have breasts that cannot be adequately imaged with mammograms and ultrasound
- Pathology review of biopsy sample
- Estrogen/progesterone receptor and HER2 test of tissue
- Bone scan (only done if bone pain or tests suggest cancer has spread to bones)
- Abdominal CT, US, or MRI — optional for stage II, recommended if blood chemistry tests abnormal or Stage IIIA – T3, N1, M0

Stage I, II, and Some Stage III Breast Cancer

The guidelines for women with stage I and II tumors, and those stage IIIA tumors larger than 5 centimeters (2 inches) with breast cancer in the lymph nodes, but not attached to each other (T3, N1, M0), recommend the following:

- Medical history and physical examination
- Complete blood count, platelet count, and liver function tests
- Chest x-ray
- Diagnostic mammograms of both breasts
- Breast ultrasound, if needed
- Breast MRI with dedicated breast coil, if needed
• Pathology review of biopsy sample
• Hormone receptor test of the biopsy sample
• HER2 test of the biopsy sample

Bone scan may be ordered and is recommended if there is bone pain or abnormal blood tests.

Abdominal CT scan, ultrasound, or MRI may be ordered for stage II and is recommended if the blood tests are abnormal or the stage is IIIA (T3, N1, M0).

For patients with Stage I or II breast cancer, the surgery can either be a lumpectomy (removing only the cancer and a margin of surrounding normal tissue) or complete...
removal of the breast (mastectomy). The decision tree on pages 46–47 only addresses lumpectomy. Mastectomy is addressed in the decision tree on pages 50–51.

Lumpectomy as the surgical treatment is possible in most women with stage I or II breast cancer. If the tumor is large (greater than 2 cm in diameter), breast-conserving surgery is sometimes done after chemotherapy (see “Primary Treatment” on the decision tree on page 67).

Radiation to the whole breast is recommended as part of the treatment following lumpectomy in most cases. Extra radiation should be given to the area of the breast where the tumor was removed. Breast irradiation may be omitted in some patients over 70 years old with small, hormone receptor positive tumors that do not have lymph node involvement, and who are treated with hormone therapy. The NCCN guidelines recommend that patients interested in partial breast irradiation should participate in a clinical trial.

In addition to removing the cancer by lumpectomy or mastectomy, the lymph nodes under the arm are examined to see if they
contain cancer. There are 2 choices for examining the lymph nodes — sentinel lymph node biopsy or axillary lymph node dissection. For more information on this see the discussion “Lymph Node Surgery” on page 20. Lymph node surgery is also described in the decision tree on pages 52–53.

Not all patients need lymph node evaluation; these include patients with favorable tumors, where selection of additional treatment will not be based on whether or not the lymph nodes are involved, or in patients with other serious medical conditions. These specific circumstances should be discussed with your doctor. If the cancer has spread to lymph nodes, radiation to these areas may be given, depending on the number of involved nodes.

In choosing lumpectomy versus mastectomy, women must understand that as long as lumpectomy is a treatment option for them, the chances of successful treatment and survival are the same with lumpectomy and radiation as with mastectomy. The factors to consider when choosing lumpectomy or mastectomy are discussed in the first part of this booklet, starting on page 18.
If a woman and her doctor choose a mastectomy as her breast treatment, the guidelines recommend radiation after surgery in the following situations:

- If the cancer has spread to 4 or more lymph nodes, radiation should be given to the area that the breast was removed from (the chest wall), the area above the collarbone, and perhaps the part of the chest near the breastbone.
- If the cancer has spread to 1 to 3 lymph nodes, radiation should be considered for the area that the breast was removed from (the chest wall), the area above the collarbone, and perhaps the part of chest near the breastbone.
- Even if there is no spread to lymph nodes, if the tumor is larger than 5 cm or the margins are positive, radiation should be given to the area that the
breast was removed from (the chest wall), the area above the collarbone, and possibly to the area near the breastbone.

- If the tumor is less than 5 cm and the margins are very close, radiation should be given to the area that the breast was removed from (the chest wall).

No radiation is needed if the tumor is smaller than 5 centimeters, with good margins, and no spread to lymph nodes.

In all cases where both radiation and chemotherapy are used, the radiation is given after chemotherapy unless the chemotherapy regimen is CMF. CMF and radiation can be given together.
Axillary Lymph Node Surgery
In addition to the surgery for the cancer in the breast, the lymph nodes under the arm are examined in most cases. This provides information to guide further treatment and is usually done at the same time as the breast surgery.

The types of surgery for lymph nodes under the arm are fully discussed in the first section of this booklet (see page 20). The choices are complete removal of the lymph nodes (axillary lymph node dissection) or removal of a few lymph nodes in the sentinel lymph node biopsy procedure. In a mastectomy, the lymph nodes are removed through the same incision (cut in the skin). In a lumpectomy, it is usually done through an incision separate from the lumpectomy incision.

Sentinel lymph node biopsy is not appropriate for all women, but it is the preferred method of lymph node surgery for women who do not have any signs that cancer has spread to the lymph nodes (the nodes are not enlarged and are not felt to contain cancer on physical exam at the time of diagnosis) and who have not yet had any chemotherapy or
hormone therapy. If a suspicious node is found on physical exam, it can be first tested with a needle biopsy. If the biopsy shows no evidence of cancer, a sentinel node biopsy is still appropriate. A sentinel node biopsy should only be done if the team of doctors has proven experience with this procedure. If a woman is a candidate for a sentinel node biopsy but such a team is not initially available, she should discuss with her doctor the possibility of referral to an experienced sentinel lymph node team.
Additional Treatment (Adjuvant Therapy) After Surgery

After surgery, decisions about adjuvant chemotherapy or hormonal treatment for most types of breast cancer (with the exception of tumors with good prognosis cell types, such as tubular or colloid) are based on the status of the hormone receptors and whether or not the tumor is HER2-positive. This creates 4 different groups of tumors based upon the hormone receptor and HER2 status:

- hormone receptor-positive and HER2-positive tumors
- hormone receptor-negative and HER2-positive tumors
- hormone receptor-positive and HER2-negative tumors
- hormone receptor-negative and HER2-negative tumors.

In general, hormone therapy is used only for patients with tumors that are hormone receptor-positive, and trastuzumab is used only in patients with tumors that are HER2-positive. Chemotherapy is used when there is a higher risk of tumor spread based on tumor stage and grade, or if the tumor is hormone receptor-negative and HER2-positive.
receptor-negative. Patients are often treated with combinations of these therapies (e.g., hormone therapy, trastuzumab, and chemotherapy, depending on the status of the hormone receptors, HER2 status, and the risk for recurrence).

Specific recommendations regarding type of hormone therapy are discussed in the decision tree on pages 62–63.

Currently there is not enough information available to make strong recommendations regarding adjuvant chemotherapy for those over the age of 70. Decisions regarding chemotherapy in this group should take into consideration other health conditions.

The decision trees on the following pages divide patients into three broad groups:
- those with small invasive ductal or lobular cancers (and its variants) with minimal or no lymph node involvement (pages 56–57)
- those with larger invasive ductal or lobular cancers, or cancers involving lymph node (pages 58–59)
- those with cancers with a more favorable outlook. For example, women with cancers that are tubular or colloid subtypes (pages 60–61)
Additional (Adjuvant) Treatment for Invasive Ductal, Lobular, Mixed, or Metaplastic Cancers with Small Tumors

This decision tree describes additional treatment for women with invasive ductal, lobular, mixed, or metaplastic cancer that measures up to 1 cm in diameter. The tumor has not spread to the chest wall or skin and the lymph nodes are either not involved, or only one lymph node shows a very small deposit of cancer:

- If the tumor is smaller than 0.5 cm, or the tumor is considered microinvasive, or is a well-differentiated tumor and is no larger than 1 cm, and shows no lymph node spread, then no adjuvant treatment is needed. If there is lymph node spread of 2 mm or less, hormone therapy may be given if the tumor is hormone receptor-positive and chemotherapy may be given if the tumor is hormone receptor-negative.
When the tumor measures 0.6 to 1 cm, is moderately or poorly differentiated, or has unfavorable features (such as looking aggressive under the microscope), hormone therapy with or without chemotherapy is given if the tumor is hormone receptor-positive. Whenever chemotherapy is given, it should be given before hormone therapy. Ovarian ablation using surgery, radiation therapy, or drugs (LHRH agonists or antagonists) may also be recommended in premenopausal women, although the benefit is uncertain in those who have received adjuvant chemotherapy. Chemotherapy alone is given if the tumor is hormone receptor-negative.

Adjuvant chemotherapy options are listed in the chart on page 26.
Additional (Adjuvant) Treatment for Invasive Ductal, Lobular, Mixed, or Metaplastic Cancers with Larger Tumors or Lymph Node Spread

This decision tree focuses on additional treatment for women with invasive ductal, lobular, mixed, or metaplastic tumors that are greater than 1 cm in diameter and/or with positive lymph nodes. The HER2 status of the tumor is also important in choosing therapy.

Chemotherapy is recommended for most patients in this category. Hormone therapy and/or trastuzumab are also used depending upon the features of the tumor. Hormone therapy is recommended if the tumor is hormone receptor-positive, and trastuzumab is recommended if the tumor is HER2-positive. Whenever chemotherapy is given, it should be given before hormone therapy.

The decision to take chemotherapy, hormone therapy, and/or trastuzumab is an important decision in the treatment of breast cancer. Your doctor should be able to estimate the likelihood that they will improve...
Along with your doctors, you should balance the benefits and the side effects of the treatment to decide if it is right for you. Adjuvant chemotherapy options are listed in the chart on page 26.
Additional (Adjuvant) Treatment for Tubular or Colloid Breast Cancers

This decision tree addresses additional treatment for tubular or colloid breast cancers, which have a more favorable outlook than other types of breast cancer. The hormone receptor status is an important factor in deciding treatment in these tumors, but HER2 status is not, since these tumors are usually HER2-negative. In fact, the diagnosis of tubular cancer should be questioned if the tumor is either hormone receptor-negative or HER2-positive.

The treatment options for tubular and colloid tumors are based on the size of tumor and lymph node status, as well as the status of hormone receptors. NCCN recommends the following:

- For tumors smaller than 1 cm with no or a very small amount of spread in one lymph node, no treatment is needed after surgery. Hormone therapy may be considered if the tumor is hormone receptor-positive.
- If the tumor is between 1 to 2.9 cm in size, with no or a very small amount of spread in one lymph node, adjuvant...
Chemotherapy may be considered. Hormone therapy could be added for those whose tumor has positive hormone receptors.

- Adjuvant chemotherapy is more strongly recommended for tumors 3 cm in diameter or larger, or those with positive lymph nodes. Hormone therapy should be added if the tumor is hormone receptor-positive.

The benefits of chemotherapy and hormone therapy are additive. However, the benefit of chemotherapy may be minimal in patients over 60 years-old with good prognosis tumors who are already receiving hormone therapy. In this these patients, the decision to add chemotherapy to hormone therapy should be individualized.
Additional (Adjuvant) Hormone Treatment

This decision tree describes the options for additional hormonal treatment after breast surgery in women with tumors that are hormone receptor-positive. In the past, tamoxifen has been the standard therapy. Results of recent clinical trials have pointed to new treatments, particularly the use of aromatase inhibitors (anastrozole, letrozole, or exemestane) in postmenopausal women. Although all aromatase inhibitors are probably equally effective, they are specifically named in this decision tree, based on the results of clinical trials.
In general, tamoxifen is recommended for premenopausal patients. Treatment with tamoxifen followed by an aromatase inhibitor, or an aromatase inhibitor alone is recommended for postmenopausal women. Treatment with tamoxifen followed by an aromatase inhibitor is an option for premenopausal women who become postmenopausal during tamoxifen treatment.

If use of an aromatase inhibitor is considered in a woman who was premenopausal at the time of her diagnosis of breast cancer, she...
should be repeatedly monitored for hormone levels such as estradiol and FSH to make sure that she is truly postmenopausal.

For premenopausal women, tamoxifen for 2 to 3 years is recommended. While tamoxifen alone is often recommended, another option is to combine tamoxifen with efforts to decrease ovarian production of estrogen using surgery, radiation, or a medicine called a LHRH (leutinizing hormone releasing hormone) agonist or antagonist. If the woman becomes postmenopausal during treatment, the tamoxifen should be continued for a total of 5 years and followed by 5 years of letrozole. Another option would be stopping the tamoxifen after 2-3 years and taking exemestane or anastrozole for the remaining 2 to 3 years. If the woman remains premenopausal during the 2-3 years of treatment with tamoxifen, the tamoxifen should be continued.
for a total of 5 years. If she then becomes postmenopausal, the tamoxifen should be stopped and letrozole for 5 years should be added.

For women who are postmenopausal at the beginning of therapy, one choice is an aromatase inhibitor, either anastrozole or letrozole, for 5 years. A second option is to take tamoxifen for 2 to 3 years and then complete 5 years of treatment with either exemestane or anastrozole. A third choice is to take tamoxifen for 4.5 to 6 years and then take letrozole for 5 years. If a woman can't take an aromatase inhibitor, then tamoxifen for 5 years is an acceptable option.

Aromatase inhibitors may weaken bones. Therefore, women taking these drugs should have periodic checks of their bone strength to determine if they would benefit from bone strengthening drugs.
Clinical Stage

The cancer is larger than 2 cm and doesn’t invade chest wall or skin. Lymph nodes can be enlarged but are movable. Diagnosed by needle biopsy not excision. Breast-conserving surgery not possible because too large a tumor in the breast.

Work-up

<table>
<thead>
<tr>
<th>Wants to preserve breast</th>
<th>Doesn’t want to preserve breast</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Medical history and physical examination</td>
<td></td>
</tr>
<tr>
<td>- Blood counts and chemistry tests</td>
<td></td>
</tr>
<tr>
<td>- Chest imaging</td>
<td></td>
</tr>
<tr>
<td>- Diagnostic mammograms (both breasts)</td>
<td></td>
</tr>
<tr>
<td>- Breast MRI with dedicated breast coil may be considered for women who have breasts that cannot be adequately imaged with mammography or ultrasound</td>
<td></td>
</tr>
<tr>
<td>- Pathology review of biopsy sample</td>
<td></td>
</tr>
<tr>
<td>- Hormone receptor tests</td>
<td></td>
</tr>
<tr>
<td>- HER2 test</td>
<td></td>
</tr>
<tr>
<td>- Bone scan and CT, MRI or ultrasound of abdomen if symptoms or abnormal blood tests or tumor over 5 cm with lymph node spread</td>
<td></td>
</tr>
</tbody>
</table>

Treatment of Large Stage II or Stage IIIA Breast Cancers

Breast-conserving treatment is usually not recommended for women with large tumors. However, chemotherapy may shrink the tumor enough to permit a lumpectomy that completely removes the main tumor and still keeps the size and shape of the breast acceptable. Preoperative chemotherapy is an option that allows some women with large tumors (larger than 2 cm) that have not spread to the skin or chest wall to have breast-conserving treatment if they want it.

The work-up recommended before starting preoperative chemotherapy includes:

- Medical history and physical examination
- Blood counts and chemistry tests
- CT scan of the chest or chest x-ray
- Diagnostic mammogram of both breasts
Primary Treatment

- Breast ultrasound and MRI with dedicated breast coil, if needed
- Pathology review of biopsy sample
- Hormone receptor test of the biopsy sample
- HER2 test of the biopsy sample
- Bone scan and CT, MRI or ultrasound of the abdomen if the tumor is larger than 5 cm (2 inches) with lymph node spread, or if there are symptoms of bone spread, such as pain, or abnormal blood tests.
If there are enlarged lymph nodes, a needle biopsy can be done before chemotherapy. If the lymph nodes are not enlarged a sentinel node procedure may be done before chemotherapy. It is recommended that the tumor be marked before chemotherapy so that the area can be located in the event that the tumor completely disappears on physical examination and mammogram.

The same drugs used as adjuvant treatment in Stage I or II breast cancer are also used before surgery to shrink the tumors to permit a mastectomy or lumpectomy. If the tumor is HER2-positive, trastuzumab should be added to the chemotherapy. If the tumor is hormone receptor-positive, then hormone therapy is sometimes used instead of chemotherapy. If hormone therapy is used instead of chemo-
therapy, the preferred hormone therapy is an aromatase inhibitor in postmenopausal women.

If the tumor shrinks from the chemotherapy or hormone therapy, the next step is lumpectomy and removal of underarm lymph nodes unless a sentinel lymph node biopsy done before the chemotherapy finds no cancer in the sentinel lymph nodes.

If the tumor doesn’t shrink enough to permit a lumpectomy, another type of chemotherapy may be given, but a mastectomy will be needed if there isn’t enough shrinkage in the tumor to allow a lumpectomy. Mastectomy may be followed by breast reconstruction. The underarm lymph nodes should be removed unless a sentinel lymph node biopsy done before the chemotherapy found no cancer in the sentinel lymph nodes.
After mastectomy or lumpectomy, more chemotherapy may be recommended, depending on the tumor size and number of positive lymph nodes. If the tumor was hormone receptor-positive, hormone therapy should be given. If the tumor was HER2-positive, trastuzumab is continued after the mastectomy or lumpectomy to complete a year of treatment. If a lumpectomy was done, it should be followed by radiation therapy to the whole breast and sometimes to the surrounding lymph nodes. The decision to treat the lymph nodes or skin with radiation after mastectomy is based on the same principles as in Stage I and II on page 50.
Radiation Therapy

- Radiation therapy (after surgery) depending on tumor size and lymph node status (see page 50)
 - **AND**
 - Hormonal therapy if hormone receptor-positive.
 - **AND**
 - Trastuzumab to complete a year of treatment if HER2-positive

See follow-up care on page 76
Stage III Locally Advanced Breast Cancers

These are advanced cancers that are growing into the skin or chest wall or have enlarged lymph nodes that are matted together. There is no evidence of spread anywhere else in the body. The recommended work-up for these stage III breast cancers includes:

- Medical history and physical examination
- Blood counts and blood tests to measure liver function
- Chest CT scan and perhaps chest x-ray
- Diagnostic mammogram of both breasts
- Breast ultrasound, if needed
- Breast MRI with dedicated breast coil, if needed
- Pathology review of the biopsy samples
- Hormone receptor test of the biopsy sample

Work-up

<table>
<thead>
<tr>
<th>Clinical Stage</th>
<th>Work-up</th>
</tr>
</thead>
</table>
| Stage III (Tumor growing into chest wall or skin, or enlarged lymph nodes can be felt) | • Medical history and physical examination
• Blood count and chemistry tests
• Chest CT scan with or without x-ray
• Diagnostic mammograms (both breasts), ultrasound as needed
• Breast MRI with dedicated breast coil if needed
• Pathology review of biopsy sample
• Pre-chemotherapy hormone receptor tests, HER2 test
• Bone scan
• CT, MRI, or ultrasound of abdomen |

Preoperative Chemotherapy

- Doxorubicin- or epirubicin- based or docetaxel- or paclitaxel-based preoperative chemotherapy preferred
- Patients with tumors over-expressing HER2 should be considered for preoperative chemotherapy that includes trastuzumab
The treatment for locally advanced breast cancer starts with chemotherapy given before surgery. The chemotherapy regimen should contain an anthracycline (doxorubicin or epirubicin) or a taxane (paclitaxel or docetaxel) and should include trastuzumab if the tumor is HER2-positive.

Women whose tumors shrink enough to be surgically removed have 2 options:

- Mastectomy and removal of underarm lymph nodes, radiation to the chest wall and lymph nodes above the collarbone and perhaps internal nodes next to breastbone, with or without delayed breast reconstruction
- More chemotherapy and hormone therapy if hormone receptor present or unknown, and trastuzumab if tumor is HER2-positive (see follow-up on page 76)

©2007 by the National Comprehensive Cancer Network (NCCN) and the American Cancer Society (ACS). All rights reserved. The information herein may not be reproduced in any form for commercial purposes without the expressed written permission of the NCCN and the ACS. Single copies of each page may be reproduced for personal and non-commercial uses by the reader.
• Mastectomy and removal of underarm lymph nodes. This is followed by radiation therapy to the chest wall, the lymph nodes above the collarbone, and, if they are enlarged, the internal nodes next to the sternum or breastbone. Breast reconstruction can be done later if desired.

• Lumpectomy with removal of lymph nodes, if the cancer has shrunk enough, followed by radiation therapy to the breast and the lymph nodes above the collarbone, and, if they are enlarged, the internal nodes next to the sternum or breastbone.
The guidelines recommend that these women get more chemotherapy after surgery. If the cancer is hormone receptor-positive or the status is unknown, hormone therapy is recommended. If the tumor is HER2-positive, trastuzumab is also recommended.

Women with stage IIIA or IIIB breast cancer that doesn’t shrink with their first treatment can be treated with another chemotherapy regimen and/or radiation. If the tumor shrinks, the patient can be treated as outlined above. If the tumor does not shrink, the patient should discuss treatment for their specific situation with their doctor.
Follow-up and Treatment of Stage IV Disease or Recurrence of Disease

Routine follow-up for all patients who have had invasive breast cancer includes a medical history and physical exam every 4 to 6 months for 5 years, then once a year.

Women who have had a mastectomy should have a yearly mammogram of the remaining breast after the surgery. Women who have had a lumpectomy should have a mammogram of the treated breast 6 months after radiation therapy, and then mammograms of both breasts every year.

Because tamoxifen increases a woman’s risk of developing cancer of the uterus, women taking this drug should have a yearly GYN history and exam and should promptly tell their doctor if there is any abnormal bleeding from the vagina.

Women on an aromatase inhibitor, or those who went through early menopause because of cancer treatment should have their bone strength tested regularly using a test called a bone mineral density test.

If there is a suspicion of recurrent breast cancer or if the breast cancer had spread to
other parts of the body by the time it was diagnosed, the work-up includes:

- Complete medical history and physical examination
- Blood counts and chemistry tests
- Liver function tests
- Chest imaging
- Bone scan

Weight-bearing bones that are painful or showed abnormalities on the bone scan should also be x-rayed. CT or MRI of the abdomen or chest and/or PET scans should be done if there are symptoms or blood tests suggesting a recurrence in these areas. A biopsy should be done to confirm the first recurrence whenever possible. If HER2 testing was not done on the original cancer or was negative, it should be done on a new biopsy specimen if possible. Likewise, if hormone receptor tests were not done or were negative, testing for these should be done.
A recurrence may be local, meaning that cancer has returned to the area of the breast, underarm lymph nodes, or nearby tissue. Or it may be systemic, which means that cancer has spread to distant organs.

If the recurrence is local and the woman has had a mastectomy, the recurrent cancer should be removed by surgery (if possible). The area of the recurrence and surrounding tissues should receive radiation therapy, but only if it was not given before. If the cancer cannot be removed with surgery, the woman should have radiation therapy if it was not given before. In either case, the NCCN recommends considering chemotherapy, hormone therapy, or trastuzumab.
If the woman was first treated with lumpectomy and/or radiation and the recurrence is in the breast, a mastectomy should be done. Then chemotherapy, hormone therapy, and trastuzumab therapy should be considered.

If the recurrence is in areas outside the breast or lymph nodes around the breast, or the cancer is first diagnosed as stage IV, the treatment options are based on whether or not the tumor is hormone receptor-positive and...
whether the tumor has limited or extensive spread.

Hormone therapy with or without ovarian ablation is appropriate for the following patients:

- The tumor is hormone receptor-positive; and
- There is spread only to the bones or soft tissues; or
- The cancer has spread to other organs such as the liver or lungs, but the organs are still working well.

The specific treatment is based on what type of treatment the patient has received before and whether or not the woman is premenopausal or postmenopausal. For example, if an antiestrogen such as tamoxifen has been given within the past year, then a different hormone therapy should be offered.

If the patient has not received an antiestrogen within the past year, the treatment options are based on whether the patient is pre- or postmenopausal. For postmenopausal women, an aromatase inhibitor or antiestrogen would be the first choice. Premenopausal...
women may be treated with an antiestrogen alone. Another treatment option for premenopausal women is to block the ovaries from making estrogen and then use hormone therapy similar to postmenopausal patients. The ovaries may be blocked with a medicine that decreases estrogen production in the ovary, with radiation therapy to the ovary, or by surgically removing the ovaries. If there is spread to bone, either pamidronate or zoleodronic acid, along with calcium citrate and vitamin D, should be given to strengthen the bones.

In patients whose tumor is hormone receptor-negative, treatment options depend on whether or not the tumor is HER2-positive. If the tumor is HER2-positive, then trastuzumab may be given, either alone or combined with chemotherapy.

If the tumor is HER2-negative, chemotherapy alone is recommended.

If the tumor does not shrink after 3 different chemotherapy regimens, stopping chemotherapy and providing supportive care to relieve symptoms should be considered.
If the hormone therapy causes the cancer to shrink or at least not grow for a while, it should be continued until the cancer begins to grow. If the cancer begins to grow, invades other organs, or the side effects of the hormone treatment cannot be tolerated any longer another hormone treatment may be tried. The NCCN recommends trying at least 3 different hormone treatments until there is no longer any benefit or the cancer has spread extensively to internal organs with associated symptoms. At that point chemotherapy is recommended.

Hormone therapy is not recommended in three situations:
Follow-up and Treatment of Stage IV Disease or Recurrence of Disease (continued)

- When the tumor is hormone receptor-negative; or
- When the tumor has not responded to three prior hormone therapies; or
- When the tumor has spread extensively to organs such as the lungs or liver, and is causing the organs to not work well.

If the cancer does not respond to chemotherapy after a total of 3 different chemotherapy regimens, or if the woman becomes very weak and is spending much of her time in bed, supportive care that focuses on relieving symptoms should be considered.
Breast Cancer in Pregnancy

Some women develop breast cancer while they are pregnant. In this special situation, it is often necessary to try and find a treatment program that helps the mother, but doesn’t hurt the fetus. Unfortunately, this is not always possible.

Treatment options depend on how long the woman has been pregnant. Doctors divide pregnancy into the first three months (first trimester), second three months (second trimester), and third three months (third trimester). Women who are diagnosed with breast cancer during the first trimester should consider the option of having the pregnancy terminated. This is because the use of drug treatments during the early part of pregnancy may cause damage to the fetus.

In general, the treatment options for women who are pregnant are similar to those recommended in non-pregnant women except that:
Chemotherapy should not be given during the first trimester of pregnancy, some chemotherapies (such as methotrexate) need to be avoided, and radiation therapy should not be administered at any point during pregnancy. For this reason, the radiation therapy that is part of breast-conserving therapy must be postponed until after the patient has given birth.

Adjuvant Treatment

- Begin with adjuvant chemotherapy in 2nd trimester, with or without adjuvant radiation after birth, with or without adjuvant hormone therapy after birth.
- Adjuvant chemotherapy, with or without adjuvant radiation after birth, with or without adjuvant hormone therapy after birth.
- Possible adjuvant radiation after birth, with or without adjuvant hormone therapy after birth.
- Adjuvant chemotherapy, with or without adjuvant radiation after birth, with or without adjuvant hormone therapy after birth.

Also, hormone therapy should not be started until after the patient has given birth.

It is very important that the cancer doctors and the obstetrician of a woman who has breast cancer while pregnant communicate and work closely together so that both the mother and the baby can have the best possible outcomes.
Adjuvant therapy
Treatment that is added to increase the effectiveness of a primary therapy. It usually refers to hormonal therapy, chemotherapy, or radiation therapy added after surgery to kill any remaining cancer cells and increase the chances of curing the disease or keeping it in check.

Antiestrogen
A substance that blocks the effects of estrogen on tumors (for example, the drug tamoxifen). Antiestrogens are used to treat breast cancers that depend on estrogen for growth.

Aromatase inhibitors
Drugs that block production of estrogens from hormones made by the adrenal gland. They are used to treat hormone-sensitive breast cancer in postmenopausal women. Examples are anastrozole, letrozole, and exemestane.

Axillary lymph node dissection
A surgical procedure in which the lymph nodes in the armpit (axillary nodes) are removed and examined to find out if breast cancer has spread to those nodes. This procedure is also done to remove any cancerous lymph nodes.

Biopsy
The removal of a sample of tissue to see whether cancer cells are present.

Bisphosphonates
Drugs that help strengthen bones weakened by cancer by encouraging the deposition of calcium. Examples are pamidronate and zoledronate.

Brachytherapy
Radiation therapy that involves the placement of radioactive materials (“seeds”) in or near the site where the tumor was removed. It is also called internal radiation or interstitial radiation. These radioactive materials may be placed in the lumpectomy site to “boost” the radiation dose in addition to external beam radiation therapy.

BRCA1/BRCA2 gene mutation
Genes are the “blueprint” of the cell; they are also units through which inherited characteristics are passed from parent to child. BRCA1 and BRCA2 are names of two genes that are believed to be involved in protecting cells from changing into cancer cells. However, changes (mutations) in these genes increase a person’s chance of developing certain types of cancers, such as breast cancer.

A test is available to determine if a woman has a BRCA1 or BRCA2 gene mutation. Since the majority of women with breast cancer do not have a mutation in the BRCA1 or BRCA2 gene, these tests are usually considered only for certain groups of women — for example,
women who have a number of close blood relatives with breast cancer, women with breast cancer in both breasts, and women diagnosed with breast cancer at a young age. The ACS recommends that anyone getting genetic testing also receive genetic counseling.

Breast-conserving treatment or therapy
Surgery to remove a breast cancer and a small amount of normal tissue around the cancer, without removing any other part of the breast. This procedure is also called lumpectomy, segmental excision, or limited breast surgery. The surgery may require an axillary dissection and usually requires radiation therapy afterwards.

Breast coil for MRI
When viewing an area of the body using MRI, the best pictures are made when using coils (part of the MRI equipment) that are specifically made (dedicated) to evaluate that particular body part. For example, when a head MRI is performed, the head is surrounded by a head coil. MRI images of the breast can be generated when a general body coil is used; however, much better images can be generated when a dedicated breast coil is used.

Breast reconstruction
Surgery that rebuilds the breast contour after mastectomy. A breast implant or the woman's own tissue provides the contour. If desired, the nipple and areola (the dark circle around the nipple) may also be re-created. Reconstruction can be done at same time as the mastectomy or any time later.

Carcinoma in situ
An early stage of cancer, in which the tumor is still only in the structures of the organ where it first developed — the disease does not invade other parts of the organ or spread to distant sites. Most in situ carcinomas are highly curable.

Chemotherapy
Treatment with drugs to destroy cancer cells, sometimes called “chemo.” Chemotherapy is often used in addition to surgery or radiation to treat cancer when spread (metastasis) is proven or suspected, when the cancer has come back (recurred), or when there is a strong likelihood that the cancer could recur.

Clinical Stage
Clinical stage is the stage determined only by physical examination and x-ray or other imaging studies. This includes determination of the size of the cancer and evaluation of lymph nodes by the doctor’s examination of the armpit. Clinical stage is used for initial treatment planning. See stage and pathological stage.

Clinical trial
Research studies test new drugs or treatments and compare them to current, standard treatments. Before a new treatment is used on people, it is studied in the lab. If lab studies suggest the treatment works, it is tested in patients. These human studies are called clinical trials.

Cyst
A fluid-filled mass that is usually not cancer (benign). The fluid can be removed for testing to be sure that cancer is not present.
Ducts
Hollow passages for gland secretions. In the breast, a passage through which milk passes from the lobule (which makes the milk) to the nipple. These ducts are the starting point for most breast cancers.

Ductal carcinoma in situ
The most common type of non-invasive breast cancer. Cancer cells have not spread beyond the ducts.

Estrogen
A female sex hormone produced primarily by the ovaries, and in smaller amounts from hormones produced by the adrenal gland and fat cells. In some breast cancers, estrogen helps the breast cancer cells grow.

Fibroadenoma
A type of non-cancerous breast tumor made of fibrous tissue and glandular tissue. On clinical examination or breast self-examination, it usually feels like a firm, round, smooth lump. These usually occur in young women.

Fibrocystic changes
A term that describes certain non-cancerous changes in the breast; also called fibrocystic disease. Symptoms of this condition are breast swelling or pain. The breasts often feel lumpy or nodular. Because these signs sometimes mimic breast cancer, diagnostic mammography, ultrasound, or even a biopsy may be needed to show that there is no cancer.

Fibrosis
Formation of fibrous (scar-like) tissue. This can occur anywhere in the body.

Grade
Cancer cells are graded by how much they look like normal cells. Grade 1 (also called well-differentiated) means the cancer cells look like the normal cells. Grade 3 (poorly differentiated) cancer cells do not look like normal cells at all. Grade 1 cancers aren’t considered aggressive. In other words, they tend to grow and spread more slowly. Grade 3 cancers are more likely to grow fast and metastasize. A cancer’s grade, along with its stage, is used to determine treatment.

HER2
A gene that produces a type of receptor that helps cells grow. Breast cancer cells with too many HER2 genes and/or receptors tend to be fast-growing and may respond to treatment with certain drugs targeted to the HER2 receptor, such as trastuzumab and lapatinib.

Histology
The way the cancer cells look under the microscope (described as type and arrangement of tumor cells).

Hormone
A chemical substance released into the body by glands, such as the thyroid, pituitary, or ovaries. The substance travels through the bloodstream and sets in motion various body functions. For example, prolactin, which is produced in the pituitary gland, begins and sustains the production of milk in the breast after childbirth.

Hormone receptor
These are the cells’ “welcome mat” for hormones circulating in the blood. The receptor is a protein located on a cell’s surface (or within the cell cytoplasm) that binds to a hormone.
Tumors can be tested for hormone receptors to see if they can be treated with hormones or anti-hormones. See also, **hormone receptor assay**.

Hormone receptor assay
A test to see whether a breast tumor has hormone receptors and is affected by hormones or can be treated with hormones.

Hormone therapy
Can be treatment with hormones, treatment with drugs that interfere with hormone production or hormone action, or surgical removal of hormone-producing glands to kill cancer cells or slow their growth. The most common hormone therapy for breast cancer is the drug tamoxifen. Other hormonal therapies include aromatase inhibitors, androgens, and surgical removal of the ovaries (oophorectomy).

In situ
Cancer *in situ* is localized in its original place and confined to one area. This describes a very early stage of cancer.

Internal mammary lymph nodes
Lymph nodes located inside the chest, next to where the sternum (breastbone) and the ribs come together.

Intraductal papillomas
Small, finger-like, polyp-like, non-cancerous growths in the breast ducts that may cause a bloody nipple discharge. These are most often found in women 45 to 50 years of age. When many papillomas exist, breast cancer risk is slightly increased.

LHRH (luteinizing hormone-releasing hormone) agonists or antagonists
Drugs that block the ovaries so they cannot produce estrogen.

Lobular carcinoma in situ
Also called lobular neoplasia. Non-invasive cancer that has not spread beyond the lobules. The lobules are the milk-producing parts of the breast at the distant end of the ducts.

Lumpectomy
Surgery to remove the breast tumor and a small amount of surrounding normal tissue.

Lymph nodes
Small, bean-shaped collections of immune system tissue located along lymphatic vessels. They remove waste and fluids from lymph and help fight infections. Also called lymph glands.

Lymphedema
A possible complication after breast cancer treatment. Swelling in the arm is caused by excess fluid that collects after lymph nodes and vessels have been removed by surgery or treated with radiation.

Magnetic resonance imaging (MRI)
A method of taking pictures of the inside of the body. Instead of using x-rays, MRI uses a powerful magnet and transmits radio waves through the body; the images appear on a computer screen as well as on film.

Mammogram
An x-ray image of a breast. The procedure used to generate a mammogram is called mammography. Mammography uses low dose x-rays to evaluate the breast. See screening mammography.
Margin
The edge of the tissue removed during surgery. A negative margin is a sign that no cancer was left behind. A positive margin indicates that cancer cells are found at the outer edge of the tissue that was removed and is usually a sign that some cancer remains in the body.

Mastectomy
Removal of the entire breast. In a simple or total mastectomy surgeons do not cut away any lymph nodes or muscle tissue. In a modified radical mastectomy surgeons remove the breast and some armpit lymph nodes. In a radical mastectomy (now rarely performed) surgeons remove the breast, armpit lymph nodes, and chest wall muscles under the breast.

Menopause
The time in a woman’s life when monthly cycles of menstruation stop forever and the level of hormones produced by the ovaries decreases. Menopause usually naturally occurs in a woman’s late 40s or early 50s, but it can also be caused by surgical removal of both ovaries (oophorectomy), or by chemotherapy, which often destroys ovarian function.

Metastasis
The spread of cancer cells to distant areas of the body by way of the lymph system or bloodstream.

Monoclonal antibody
Monoclonal antibodies (MABs) are made in the lab and designed to target specific substances called antigens. MABs which have been attached to chemotherapy drugs or radioactive substances are being studied to see if they can seek out antigens unique to cancer cells and deliver these treatments directly to the cancer, thus killing the cancer cells without harming healthy tissue. Trastuzumab is the MAB used to treat HER2-positive breast cancers.

Neoadjuvant treatment
Used to describe systemic therapy, such as chemotherapy or hormone therapy, given before surgery. This type of therapy can shrink some tumors, so that they are easier to remove.

Nodal status
Indicates whether a breast cancer has spread (node-positive) or has not spread (node-negative) to lymph nodes in the armpit (axillary nodes). The number and site of positive lymph nodes can help predict the risk of cancer recurrence.

Oophorectomy
Surgery to remove the ovaries.

Ovary
Reproductive organ in the female pelvis. Normally a woman has two ovaries. They contain the eggs (ova) that, when joined with sperm, result in pregnancy. Ovaries produce most of a premenopausal woman’s estrogen.

Palpation
Using the hands to examine something. A palpable mass in the breast is one that can be felt.

Partial mastectomy
A type of breast conservation surgery that removes more breast tissue than a lumpectomy (up to one-quarter of the breast). It is also called a segmental mastectomy or a quadrantectomy.
Pathologic stage
Includes the findings of the pathologist after surgery. Most of the time, pathologic stage is the most important stage since involvement of the lymph nodes can only be accurately evaluated by examining them under a microscope. See stage and clinical stage.

PET (positron emission tomography) scan
A total body scan that uses a radioactive form of glucose to detect cancer.

Preoperative chemotherapy
Chemotherapy given before surgery to shrink breast tumors so they can be removed with less extensive surgery than would otherwise be needed. Also called neoadjuvant chemotherapy.

Progesterone
A female sex hormone released by the ovaries during every menstrual cycle to prepare the uterus for pregnancy and the breasts for milk production (lactation).

Prognosis
A prediction of the course of disease — or the outlook for the cure of the patient. For example, women with breast cancer that is small, does not involve the lymph nodes, and is promptly treated have a good prognosis.

Quadrantectomy
A type of breast conservation surgery that removes more breast tissue than a lumpectomy (up to one-quarter of the breast). It is also called a partial or segmental mastectomy.

Radiation
Treatment with high-energy rays (or particles) to kill or shrink cancer cells. The radiation may come from outside of the body (external radiation) or from radioactive materials placed directly in the tumor (internal or implant radiation called brachytherapy). Radiation therapy may be used to reduce the size of a cancer before surgery, to destroy any cancer cells left behind after surgery, or, in some cases, as the main treatment.

Recurrent breast cancer
Breast cancer that has come back after treatment. Local recurrence means that the cancer has come back at the same place as the original cancer. Regional recurrence means that the cancer has come back in the lymph nodes near the primary (original) site. Distant recurrence is when cancer spreads to distant organs or tissues (such as the lungs, liver, bone, or brain) after treatment.

Screening mammogram
A screening mammogram is performed on women with no evidence of lumps or other symptoms. This includes 2 x-ray views of each breast (top to bottom; side-to-side). Diagnostic mammography includes additional x-ray views of areas of concern (found on physical examination or on the screening mammogram) to provide more information about the size and character of the abnormality.

Segmental mastectomy
A type of breast conservation surgery that removes more breast tissue than a lumpectomy (up to one-quarter of the breast). It is also called a partial mastectomy or a quadrantectomy.
Sentinel lymph node mapping and biopsy
In a sentinel lymph node mapping and biopsy, the surgeon injects a radioactive substance and/or a blue dye into the area around the tumor. Lymphatic vessels carry these materials to the sentinel lymph node (also called the sentinel node). The doctor can see the blue dye or detect the radioactivity (with a Geiger counter) in the sentinel node, which is cut out and examined under a microscope. If the sentinel node contains cancer, more axillary lymph nodes are removed. But if it is free of cancer, the patient can avoid additional axillary surgery and the potential side effects.

Side effects
Unwanted effects of treatment, such as hair loss caused by chemotherapy or fatigue caused by radiation therapy.

Sonogram
During an ultrasound the computer transforms the echoes into a picture called a sonogram. See ultrasound.

Stage
A method of describing the size and location of cancer based on characteristics of the tumor, the lymph nodes, and whether there is involvement of other organs. See clinical stage and pathological stage.

Stereotactic needle biopsy
A method of needle biopsy that is useful in some cases in which calcifications or a mass can be seen on mammogram, but cannot be located by touch (palpation). Computerized equipment maps the location of the mass and this is used as a guide to place the needle.

Supportive care
Measures taken to relieve symptoms and improve quality of life, but that are not expected to destroy the cancer. Pain medication is an example of supportive care.

Supraclavicular lymph nodes
Lymph nodes located in the area just above the collarbone.

Systemic therapy
Treatment that reaches and affects cells throughout the body; for example, chemotherapy.

Targeted Therapy
Targeted therapy is a form of treatment that attacks specific sites and/or processes that are important to the function of cancer cells. In many cases of targeted therapy, higher levels of the target (for example, the HER2 receptor) in the cancer cells are associated with greater benefit for the patient when the therapy (such as, trastuzumab) is given.

Ultrasound
High frequency sound waves used to produce images of the breast. See sonogram.

For a more comprehensive glossary, please visit the ACS web site at www.cancer.org
The Breast Cancer Treatment Guidelines for Patients were developed by a diverse group of experts and were based on the NCCN clinical practice guidelines. These patient guidelines were translated, reviewed, and published with help from the following individuals:

Terri Ades, MS, APRN-BC, AOCN
American Cancer Society

Kimberly Stump-Sutliff, MS, RN, AOCNS
American Cancer Society

Joan McClure, MS
National Comprehensive Cancer Network

Dorothy A. Shead, MS
National Comprehensive Cancer Network

Susan J. Moench, PhD, PA-C
National Comprehensive Cancer Network

The original NCCN Breast Cancer Clinical Practice Guidelines were developed by the following NCCN Panel Members:

Robert W. Carlson, MD/Chair
Stanford Comprehensive Cancer Center

Benjamin O. Anderson, MD
Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance

Harold J. Burstein, MD, PhD
Dana-Farber/Brigham and Women's Cancer Center | Massachusetts General Hospital Cancer Center

W. Bradford Carter, MD
H. Lee Moffitt Cancer Center & Research Institute at the University of South Florida

Stephen B. Edge, MD
Roswell Park Cancer Institute

William B. Farrar, MD
Arthur G. James Cancer Hospital & Richard J. Solove Research Institute at The Ohio State University

Lori J. Goldstein, MD
Fox Chase Cancer Center

William J. Gradishar, MD
Robert H. Lurie Comprehensive Cancer Center of Northwestern University

Daniel F. Hayes, MD
University of Michigan Comprehensive Cancer Center

Clifford Hudis, MD
Memorial Sloan-Kettering Cancer Center

Mohammad Jahanzeb, MD
St. Jude Children’s Research Hospital/University of Tennessee Cancer Institute

Krystyna Kiel, MD
Robert H. Lurie Comprehensive Cancer Center of Northwestern University

Britt-Marie Ljung, MD
UCSF Comprehensive Cancer Center

Lawrence B. Marks, MD
Duke Comprehensive Cancer Center

Beryl McCormick, MD
Memorial Sloan-Kettering Cancer Center

Lisle M. Nabell, MD
University of Alabama at Birmingham Comprehensive Cancer Center

Lori J. Pierce, MD
University of Michigan Comprehensive Cancer Center

Elizabeth C. Reed, MD
UNMC Eppley Cancer Center at The Nebraska Medical Center

Mary Lou Smith, JD, MBA
Consultant

George Somlo, MD
City of Hope

Richard Theriault, DO, MBA
The University of Texas M. D. Anderson Cancer Center

John H. Ward, MD
Huntsman Cancer Institute at the University of Utah

Eric P. Winer, MD
Dana-Farber/Brigham and Women’s Cancer Center | Massachusetts General Hospital Cancer Center

Antonio C. Wolff, MD
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University